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Abstract. A measure is 1-rectifiable if there is a countable union of finite length curves

whose complement has zero measure. We characterize 1-rectifiable Radon measures µ in

n-dimensional Euclidean space for all n ≥ 2 in terms of positivity of the lower density

and finiteness of a geometric square function, which loosely speaking, records in an L2

gauge the extent to which µ admits approximate tangent lines, or has rapidly growing

density ratios, along its support. In contrast with the classical theorems of Besicovitch,

Morse and Randolph, and Moore, we do not assume an a priori relationship between

µ and 1-dimensional Hausdorff measure H1. We also characterize purely 1-unrectifiable

Radon measures, i.e. locally finite measures that give measure zero to every finite length

curve. Characterizations of this form were originally conjectured to exist by P. Jones.

Along the way, we develop an L2 variant of P. Jones’ traveling salesman construction,

which is of independent interest.
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1. Introduction

A fundamental concept in geometric measure theory is a general notion of rectifiability
of a set or a measure, which generalizes the classical notion of rectifiability of a curve.
For sets, this notion of rectifiability is due to A.S. Besicovitch [Bes28]. For measures,
this notion of rectifiability is due to A.P. Morse and J. Randolph [MR44] and H. Federer
[Fed47, Fed69] (see Definition 1.1 below). Rectifiability has been extensively studied for
sets and also for measures µ that satisfy an additional regularity assumption, which is
often expressed in terms of finiteness µ-almost everywhere of the upper Hausdorff density
D

m
(µ, ·) of the measure. This assumption is equivalent to an a priori relationship between

the null sets of the measure µ and null sets of the m-dimensional Hausdorff measure Hm,
more specifically that µ vanishes on every set of Hm measure zero. One reason that this
regularity assumption is often imposed it that it allows one to replace the class of Lipschitz
images of bounded subsets of Rm appearing in Federer’s definition of rectifiability of a
measure with bi-Lipschitz images or Lipschitz graphs or C1 graphs without changing the
class of rectifiable measures. For arbitrary (or doubling) Radon measures, however, it is
known by an example of Garnett, Killip, and Schul [GKS10] that the class of measures that
are rectifiable with respect to Lipschitz images is strictly larger than the class of measures
that are rectifiable with respect to bi-Lipschitz images. While (countable) rectifiability of
a set or a measure is an inherently qualitative property, a quantitative counterpart of the
theory of rectifiability was developed in the early 1990s by P. Jones [Jon90] and by G.
David and S. Semmes [DS91, DS93]. One goal of theses investigations was to study the
connection between rectifiability and singular integral operators. In David and Semmes’
theory of uniformly rectifiable sets and measures, it is essential that the measures involved
are Ahlfors regular, a strong form of regularity of a measure.

The work in this paper addresses studying Federer’s definition of rectifiability without
imposing the standing regularity hypotheses of past investigations. We repurpose tools
from the Jones-David-Semmes theory of quantitative rectifiability to characterize Federer
1-rectifiable measures using snapshots of a measure (beta numbers) at multiple scales.
Moreover, we identify the 1-rectifiable and purely 1-unrectifiable parts of an arbitrary
Radon measure µ in Rn in terms of the pointwise behavior of the lower Hausdorff density
D1(µ, x) and a weighted geometric square function J∗p (µ, x), which records in an Lp gauge
the extent to which µ admits approximate tangent lines or has rapidly growing density
ratios along its support. For the precise statement of these main results, see §2. The
central reason we restrict ourselves to m-rectifiability with m = 1 is the special role that
connectedness has for one-dimensional sets: every closed, connected set in Rn of finite
H1 measure is a Lipschitz image of a closed interval. The current lack of a Lipschitz
parameterization theorem for surfaces is the key obstruction to understanding Federer
m-rectifiability when m ≥ 2. The innovation of this paper is to provide the first full treat-
ment of rectifiability of arbitrary Radon measures, including measures which have infinite
Hausdorff density or which are mutually singular with respect to Hausdorff measure.

1.1. Decompositions of Radon measures. A Radon measure µ on Rn is a Borel
regular outer measure that is finite on compact subsets of Rn.
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Definition 1.1 (Rectifiable and purely unrectifiable measures). Let n ≥ 1 and m ≥ 0
be integers. We say that a Radon measure µ on Rn is m-rectifiable (or equivalently, in
Federer’s terminology, Rn is countably (µ,m) rectifiable) if there exist countably many
Lipschitz maps fi : [0, 1]m → Rn such that

µ

(
Rn \

⋃
i

fi([0, 1]m)

)
= 0,

where we define [0, 1]m := {0} when m = 0. At the other extreme, we say that a Radon
measure µ on Rn is purely m-unrectifiable if µ(f([0, 1]m)) = 0 for every Lipschitz map
f : [0, 1]m → Rn. See [Fed69, pp. 251–252].

When m ≥ n, every measure on Rn is trivially m-rectifiable.
When m = 0, every Radon measure µ on Rn can be written uniquely as µ = µ0

rect+µ0
pu,

where µ0
rect is 0-rectifiable and µ0

pu is purely 0-unrectifiable. The decomposition is given
by

µ0
rect = µ {x ∈ Rn : lim

r↓0
µ(B(x, r)) > 0},(1.1)

µ0
pu = µ {x ∈ Rn : lim

r↓0
µ(B(x, r)) = 0}.(1.2)

Here and below µ E denotes the restriction of µ to E defined by µ E(F ) = µ(E ∩F )
for all F ⊆ Rn. The 0-rectifiable part µ0

rect of µ is a weighted sum of Dirac masses at the
atoms {x ∈ Rn : limr↓0 µ(B(x, r)) > 0} of µ. The purely 0-unrectifiable part µ0

pu of µ is
the atomless part of µ.

Proposition 1.2. Let 1 ≤ m ≤ n − 1. Every Radon measure µ on Rn can be written
uniquely as

(1.3) µ = µmrect + µmpu,

where µmrect is m-rectifiable and µmpu is purely m-unrectifiable.

Proof. We present a simple variation of [Mat95, Theorem 15.6], which is tailored to the
setting of finite measures of the form µ = Hm E. Let µ be an arbitrary Radon measure
on Rn. For each j ≥ 1, let Mj = supf µ(B(0, j) ∩ f([0, 1]m)), where the supremum runs
over all Lipschitz maps f : [0, 1]m → Rn. Because µ is Radon, Mj < ∞ for all j ≥ 1.
Choose any sequence of Lipschitz maps fj : [0, 1]m → Rn such that

µ(B(0, j) ∩ fj([0, 1]m)) > Mj − 1/j.

Then define µmrect := µ V and µmpu := µ Rn \V , where V :=
⋃∞
j=1 fj([0, 1]m). It is clear

that µ = µmrect + µmpu and µmrect is m-rectifiable. To see that µmpu is purely m-unrectifiable,
assume for contradiction that µmpu(g([0, 1]m)) > 0 for some Lipschitz map g : [0, 1]m → Rn.
Pick j ≥ 1 large enough such that g([0, 1]m) ⊆ B(0, j) and µmpu(g([0, 1]m)) > 1/j. Next,
let h : [0, 1]m → Rn be any Lipschitz map such that h([0, 1]m) ⊇ fj([0, 1]m) ∪ g([0, 1]m).
(For example, one could simply take h to be a Lipschitz extension of the map defined
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by h(x) = fj(3x1, x2, . . . , xm) for x1 ∈ [0, 1/3] and by h(x) = g(3x1 − 2, x2, . . . , xm) for
x1 ∈ [2/3, 1].) It follows that

Mj ≥ µ(B(0, j) ∩ h([0, 1]m))

≥ µmrect(B(0, j) ∩ fj([0, 1]m)) + µmpu(B(0, j) ∩ g([0, 1]m)) > (Mj − 1/j) + 1/j = Mj,

an apparent contradiction. Therefore, µmpu is purely m-unrectifiable. A similar argument
shows that the decomposition µ = µmrect + µmpu is unique. �

The abstract proof of Proposition 1.2 given above does not provide a concrete method
for identifying µmrect and µmpu for a given Radon measure µ. A fundamental problem in
geometric measure theory is to provide (geometric, measure-theoretic) characterizations of
µmrect and µmpu. When n = 2 and m = 1, this problem was first formulated and investigated

by Besicovitch [Bes28, Bes38] for positive and finite measures µ of the form µ = H1 E,
E ⊆ R2, and later by Morse and Randolph [MR44] (resp. Moore [Moo50]) for Radon
measures µ on R2 (resp. Rn, n ≥ 3) such that µ� H1. Here and below Hm denotes the
m-dimensional Hausdorff measure on Rn (see e.g. [Fed69] or [Mat95]), normalized to agree
with the Lebesgue measure in Rm. The condition µ � H1, called absolute continuity,
means that µ(E) = 0 for every Borel set E such that H1(E) = 0. In this paper, we
provide characterizations of the 1-rectifiable part µ1

rect and the purely 1-unrectifiable part
µ1
pu of an arbitrary Radon measure µ on Rn (see §2). We emphasize that in contrast

with previous works, our main result does not require an a priori relationship between µ
and the 1-dimensional Hausdorff measure H1. A remarkable feature of the proof of our
characterization is that we adapt techniques originating from the theory of quantitative
rectifiability to study the qualitative rectifiability of measures. In fact, our identification
of the rectifiable part of the measure µ is constructive in nature.

1.2. Hausdorff densities and rectifiability. Let 1 ≤ m ≤ n−1. The lower and upper
m-dimensional Hausdorff densities of a Radon measure µ at x ∈ Rn are defined by

(1.4) Dm(µ, x) = lim inf
r↓0

µ(B(x, r))

ωmrm
∈ [0,∞]

and

(1.5) D
m

(µ, x) = lim sup
r↓0

µ(B(x, r))

ωmrm
∈ [0,∞],

respectively, where ωm is the m-dimensional Hausdorff measure of the unit ball in Rm.
Whenever Dm(µ, x) = D

m
(µ, x), we may denote the common value by Dm(µ, x).

A Radon measure µ satisfies µ � Hm if and only if D
m

(µ, x) < ∞ at µ-a.e. x ∈ Rn.
In addition, for Radon measures which happen to be of the form µ = Hm E, the upper
density satisfies 2−m ≤ D

m
(µ, x) ≤ 1 at µ-a.e. x ∈ Rn. (For example, see Exercise 4 and

Theorem 6.2 in [Mat95, Chapter 6], respectively.) If µ is a Radon measure on Rn and µ is
m-rectifiable, then Dm(µ, x) > 0 at µ-a.e. x ∈ Rn (see [BS15, Lemma 2.7]). Rectifiability
of absolutely continuous measures is tied up with the existence of the density Dm(µ, x).
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Theorem 1.3 (Mattila [Mat75]). Let 1 ≤ m ≤ n − 1. Assume that µ = Hm E is
Radon for some E ⊆ Rn. Then µ is m-rectifiable if and only if the Hausdorff m-density
of µ exists and Dm(µ, x) = 1 at µ-a.e. x ∈ Rn.

Theorem 1.4 (Preiss [Pre87]). Let 1 ≤ m ≤ n− 1 and let µ be a Radon measure on Rn.
Then µ is m-rectifiable and µ � Hm if and only if the Hausdorff m-density of µ exists
and 0 < Dm(µ, x) <∞ at µ-a.e. x ∈ Rn.

The proofs of Theorems 1.3 and 1.4 in arbitrary dimensions 1 ≤ m ≤ n − 1 have a
distinguished place in the history of geometric measure theory. When n = 2 and m = 1,
Theorem 1.3 is originally due to Besicovitch [Bes28] (also see [Bes38]) and Theorem 1.4 is
originally due to Morse and Randolph [MR44]. An extension of the later result to n ≥ 3
was given by Moore [Moo50]. In the aforementioned works, Besicovitch also characterized
rectifiability of H1 E, E ⊆ R2, by existence H1-a.e. of approximate tangent lines to E;
and also in terms of the H1 measure of orthogonal projections (of subsets) of E onto
lines. Characterizations of rectifiability of Hm E, E ⊆ Rn, in terms of approximate
tangents and projections were extended to all dimensions 1 ≤ m ≤ n − 1 by Federer
[Fed47]. The next case of Theorem 1.3 was settled by Marstrand [Mar61], who proved
the density characterization of rectifiability when n = 3 and m = 2. A few years later,
in [Mar64], Marstrand proved that if there exists a Radon measure µ on Rn and a real
number s > 0 such that limr↓0 r

−sµ(B(x, r)) exists and is positive and finite on a set of
positive µ measure, then s is an integer. Mattila’s proof of the general case of Theorem
1.3, which is based on Marstrand’s approach, was published in [Mat75] nearly 50 years
after the pioneering paper by Besicovitch.

To prove the general case of Theorem 1.4, Preiss [Pre87] had to give a careful analysis
of the geometry of m-uniform measures µ on Rn, i.e. Radon measures with the property
that µ(B(x, r)) = ωm r

m for all r > 0, for all x ∈ Rn such that µ(B(x, r)) > 0 for all r > 0.
Although it is obvious that the restrictionHm L of m-dimensional Hausdorff measure to
an m-plane L in Rn is an example of an m-uniform measure, it is less clear if these are the
only examples. Surprisingly, starting with m ≥ 3, there exist “non-flat” uniform measures
such as H3 {(x, t) ∈ R3 × R : |x|2 = t2}; see [Pre87] (also [KP87]). Preiss introduced
several original ideas to study the geometry of non-flat uniform measures, including the
notion of a tangent measure to a Radon measure. For an in-depth introduction, we refer
the reader to the exposition of Preiss’ theorem by De Lellis [DL08]. The classification of
m-uniform measures in Rn is as of yet incomplete, but some progress has recently been
made by Tolsa [Tol15b] and Nimer [Nim15, Nim16].

The deep connections between the existence of densities and rectifiability of sets and
absolutely continuous measures in Euclidean space, as described above, have been explored
in metric spaces beyond Rn by several authors; see e.g. [PT92], [Kir94], [Lor03], [Lor04],
[CT15]. For perspectives on rectifiability in metric spaces related to existence of tangents
or projection properties, see e.g. [AK00], [Bat15], [HM15], [BL14].

The support sptµ of a Borel measure µ on a metric space X is the set of all x ∈ X
such that µ(B(x, r)) > 0 for all r > 0. In [AM16], Azzam and Mourgoglou proved
that positive lower density is a sufficient condition for a locally finite Borel measure to
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be 1-rectifiable under additional global assumptions on the measure and its support. A
locally finite Borel measure µ on X is doubling if there is a constant C > 1 such that
µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ sptµ and for all r > 0.

Theorem 1.5 (Azzam and Mourgoglou [AM16]). Assume that µ is a doubling measure
whose support is a connected metric space, and let E ⊆ sptµ be compact. Then µ E is
1-rectifiable if and only if D1(µ, x) > 0 for µ-a.e. x ∈ E.

It is important to emphasize that in Theorem 1.5, no assumption is made on the upper
density of the measure. Thus, Theorem 1.5 characterizes a class of 1-rectifiable measures,
which includes measures that are not absolutely continuous with respect to H1. Examples
of 1-rectifiable doubling measures µ on Rn with sptµ = Rn and µ ⊥ H1, which satisfy
the hypothesis of Theorem 1.5, were constructed by Garnett, Killip, and Schul [GKS10].
Interestingly, such examples give measure zero to every bi-Lipschitz image of Rm in Rn

(in particular, they give measure zero to every Lipschitz graph), but nevertheless give full
measure to a countable family of Lipschitz images of R. Following [BS15], it is also known
that such measures have density D1(µ, x) =∞ µ-a.e., with µ(B(x, r))/r →∞ at a rapid
rate as r → 0.

1.3. Lp Jones beta numbers and rectifiability. Let 1 ≤ p <∞ and let µ be a Radon
measure on Rn. For every bounded Borel set E ⊆ Rn of positive diameter (typically,
either a ball B(x, r) or a cube Q) and straight line ` in Rn, we define βp(µ,E, `) ∈ [0, 1]
by

(1.6) βp(µ,E, `)
p =

∫
E

(
dist(x, `)

diamE

)p
dµ(x)

µ(E)
,

where we interpret βp(µ,E, `) = 0 if µ(E) = 0. We then define βp(µ,E) ∈ [0, 1] by

(1.7) βp(µ,E) = inf
`
βp(µ,E, `),

where the infimum runs over all straight lines in Rn. Note that βp(µ,E, `) and βp(µ,E)
are increasing in the exponent p for all µ, E, and `. Higher dimensional beta numbers

β
(m)
p (µ,E) may be defined by letting ` range over all m-dimensional affine planes in Rn

instead of over all lines in Rn.
In [Jon90], Peter Jones characterized subsets of finite length curves in the plane in terms

of an `2 sum of a sup-norm variant of (1.6); see Definition 3.3 and Theorem 3.4 below. One
goal was to bring these quantities into the study of singular integrals [Jon89]. Guy David
and Stephen Semmes did this, and more, for curves and surfaces in their investigation of
uniformly rectifiable sets and measures (e.g. see [DS91] and [DS93]). Much work has been
done in connecting beta numbers and rectifiability (highlights include [Paj97], [Lég99],
[Ler03], [Hah08], [LW11], [DT12], [BS15], [ADT16], [BS16], [NV15]), but we single out
two recent papers, [Tol15a] and [AT15], and state one theorem, which is a combination
of their main results.

Theorem 1.6 (Tolsa [Tol15a], Azzam and Tolsa [AT15]). Let 1 ≤ m ≤ n − 1 and
let µ be a Radon measure on Rn. Then µ is m-rectifiable and µ � Hm if and only if
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0 < D
m

(µ, x) <∞ and

(1.8)

∫ 1

0

β
(m)
2 (µ,B(x, r))2 µ(B(x, r))

rm
dr

r
<∞ at µ-a.e. x ∈ Rn.

The factor µ(B(x, r))/rm appearing in (1.8) translates between different conventions in
the definition of beta numbers. In [Tol15a] and [AT15], the authors use the convention

that integration in the definition of β
(m)
2 (µ,B(x, r)) is against the measure r−mµ, whereas

our convention is that integration is against the measure µ(B(x, r))−1 µ. Note that

(1.9) β
(m)
2 (µ,B(x, r))2 µ(B(x, r))

rm
= inf

`

∫
B(x,r)

(
dist(x, `)

diam(B(x, r))

)2
dµ(x)

rm
.

A good way to access a more comprehensive survey about uniform rectifiability, its
connection to singular integrals, and its connection to analytic capacity, is to read David
and Semmes [DS93], Pajot [Paj02], and Tolsa [Tol14]. We also make some remarks in
[BS15, §4].

1.4. Conventions. We may write a . b (or b & a) to denote that a ≤ Cb for some
absolute constant 0 < C <∞ and write a ∼ b if a . b and b . a. Likewise we may write
a .t b (or b &t a) to denote that a ≤ Cb for some constant 0 < C <∞ that may depend
on a list of parameters t and write a ∼t b if a .t b and b .t a.

Below we use several grids of dyadic cubes. Unless stated otherwise, we take all dyadic
cubes in Rn to be half open, say of the form

Q =

[
j1

2k
,
j1 + 1

2k

)
× · · · ×

[
jn
2k
,
jn + 1

2k

)
, k, j1, . . . , jn ∈ Z.

The side length of Q, which we denote by sideQ, is 2−k; the diameter of Q, which we
denote by diamQ, is 2−k

√
n. Let ∆(Rn) denote the collection of all dyadic cubes in Rn

and let ∆1(Rn) denote the collection of all dyadic cubes in Rn of side length at most 1.
For any cube Q and λ > 0, we let λQ denote the unique cube in Rn that is obtained by
dilating Q by a factor of λ with respect to the center of Q. Note that sideλQ = λ sideQ
and diamλQ = λ diamQ for all cubes Q and for all λ > 0.

2. Main results and organization of the paper

In our main result, Theorem A, we characterize the 1-dimensional rectifiable and purely
unrectifiable parts of arbitrary Radon measures in terms of the pointwise behavior of the
lower density and a geometric square function to be defined below. Also, see Theorem E,
where we characterize the rectifiable and purely unrectifiable parts of a pointwise doubling
measure in terms of the pointwise behavior of a simpler geometric square function alone.

For any dyadic cube Q in Rn, define the set ∆∗(Q) of nearby cubes to be the set of all
dyadic cubes R such that

(2.1) sideQ ≤ sideR ≤ 2 sideQ

and

(2.2) 3R ⊆ 1600
√
nQ.
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The constant 1600
√
n in the definition of ∆∗(Q) is chosen to be large enough to invoke

Proposition 3.6 in the proof of Lemma 5.3, but has not been optimized.
Let 1 ≤ p < ∞ and let µ be a Radon measure on Rn. For all Q ∈ ∆(Rn), we define

β∗p(µ,Q) ∈ [0, 1] by

(2.3) β∗p(µ,Q)2 = inf
`

max

{
βp(µ, 3R, `)

2 min

(
µ(3R)

diam 3R
, 1

)
: R ∈ ∆∗(Q)

}
,

where as usual the infimum runs over all straight lines in Rn. Note that β∗p(µ,Q) = 0

whenever µ(1600
√
nQ) = 0, and β∗p(µ,Q) is increasing in p for all µ and Q. When p = 2,

β2(µ, 3R, `)2 min

(
µ(3R)

diam 3R
, 1

)
=

∫
3R

(
dist(x, `)

diam 3R

)2

min

(
1

diam 3R
,

1

µ(3R)

)
dµ(x).

(2.4)

Compare the normalizations in (1.6), (1.9), and (2.4).
Define a density-normalized Jones function J∗p (µ, x) associated to the numbers β∗p(µ,Q)

as follows. For every n ≥ 2, 1 ≤ p <∞, and Radon measure µ on Rn, define

(2.5) J∗p (µ, x) :=
∑

Q∈∆1(Rn)

β∗p(µ,Q)2 diamQ

µ(Q)
χQ(x) ∈ [0,∞] for all x ∈ Rn,

(In the definition, we use the convention 0/0 = 0 and 1/0 = ∞.) This is a variant

of the density-normalized Jones function J̃2(µ, x) used in [BS15], which was associated
to the beta numbers β2(µ, 3Q). Peter Jones conjectured circa 2000 that these types of
weighted Jones functions could be used to characterize rectifiabilty of a measure (personal
communication). In this paper’s main result, Theorem A, we verify Jones’ conjecture by
using J∗p (µ, x) to identify the 1-rectifiable and purely 1-unrectifiable parts of an arbitrary
Radon measure.

Theorem A (characterization of the 1-rectifiable / purely 1-unrectifiable decomposition).
Let n ≥ 2 and let 1 ≤ p ≤ 2. If µ is a Radon measure on Rn, then the decomposition
µ = µ1

rect + µ1
pu in (1.3) is given by

µ1
rect = µ

{
x ∈ Rn : D1(µ, x) > 0 and J∗p (µ, x) <∞

}
,(2.6)

µ1
pu = µ

{
x ∈ Rn : D1(µ, x) = 0 or J∗p (µ, x) =∞

}
.(2.7)

Corollary B (characterization of 1-rectifiable measures). Let n ≥ 2 and let 1 ≤ p ≤ 2.
If µ is a Radon measure on Rn, then µ is 1-rectifiable if and only if D1(µ, x) > 0 and
J∗p (µ, x) <∞ at µ-a.e. x ∈ Rn.

Corollary C (characterization of purely 1-unrectifiable measures). Let n ≥ 2 and let
1 ≤ p ≤ 2. If µ is a Radon measure on Rn, then µ is purely 1-unrectifiable if and only if
D1(µ, x) = 0 or J∗p (µ, x) =∞ at µ-a.e. x ∈ Rn.

The proof of Theorem A and its corollaries takes up §§4–6 below. A description of each
of these sections appears at the end of this section. The restriction to exponents p ≥ 1
in Theorem A appears in the proof of Lemma 5.2; the restriction to p ≤ 2 appears in
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the proof of Proposition 4.4. It is an open problem to determine if the conclusion of the
theorem holds in the range p > 2. The restriction to half open cubes (in the characteristic
function χQ) in the definition of J∗p (µ, x) is imposed so that in the proof of Theorem 5.1,
we may use Lemma 5.6 (also see Remark 5.7).

The methods that we develop to prove Theorem A also yield a characterization of
rectifiability of a measure with respect to a single rectifiable curve. Let 1 ≤ p < ∞ and
let µ be a Radon measure on Rn. For all Q ∈ ∆(Rn), we define β∗∗p (µ,Q) ∈ [0, 1] by

(2.8) β∗∗p (µ,Q) = inf
`

max {βp(µ, 3R, `) : R ∈ ∆∗(Q)} ,

where the infimum runs over all straight lines in Rn.

Theorem D (Traveling salesman theorem for measures). Let n ≥ 2 and let 1 ≤ p <∞.
Let µ be a finite Borel measure on Rn with bounded support. If Γ ⊆ Rn is a rectifiable
curve such that µ(Rn \ Γ) = 0, then

(2.9) S∗∗p (µ) :=
∑

Q∈∆(Rn)

β∗∗p (µ,Q)2 diamQ .n H1(Γ).

Conversely, if S∗∗p (µ) <∞, then there is a rectifiable curve Γ such that µ(Rn \Γ) = 0 and

(2.10) H1(Γ) .n diam sptµ+ S∗∗p (µ).

Theorem D may be viewed as an extension of the Analyst’s traveling salesman theorem
(see §3), which characterizes subsets of rectifiable curves. A characterization of measures
that are supported on a rectifiable curve was already known for Ahlfors regular measures
(see [Ler03, Theorem 5.1]), but in this generality is new even for absolutely continuous
measures of the form µ = H1 E. For the proof of Theorem D, see §6.

For measures satisfying an additional weak regularity property, we also obtain simpler
characterizations of the 1-rectifiable and purely 1-unrectifiable parts. Let µ be a Radon

measure on Rn and let 1 ≤ p < ∞. The density-normalized Jones function J̃p(µ, x) is
defined by

(2.11) J̃p(µ, x) :=
∑

Q∈∆1(Rn)

βp(µ, 3Q)2 diamQ

µ(Q)
χQ(x) ∈ [0,∞] for all x ∈ Rn.

A Radon measure µ on Rn is called pointwise doubling if

(2.12) lim sup
r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞ for µ-a.e. x ∈ Rn.

The class of pointwise doubling measures includes the class of Radon measures µ on Rn

with 0 < D1(µ, x) ≤ D
1
(µ, x) <∞ for µ-a.e. x ∈ Rn, but is strictly larger.

Theorem E (characterization of the 1-rectifiable / purely 1-unrectifiable decomposition
for pointwise doubling measures). Let n ≥ 2 and let 1 ≤ p ≤ 2. If µ is a pointwise
doubling measure on Rn, then the decomposition µ = µ1

rect + µ1
pu in (1.3) is given by

µ1
rect = µ

{
x ∈ Rn : J̃p(µ, x) <∞

}
,(2.13)

µ1
pu = µ

{
x ∈ Rn : J̃p(µ, x) =∞

}
.(2.14)
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See §7 for the proof of Theorem E. It is an open problem to decide if the conclusion of
Theorem E holds for arbitrary Radon measures.

Remark 2.1 (Added in May 2016). Shortly after a second draft of this paper appeared on
the arXiv in April 2016, the problem following Theorem E was answered in the negative
by Martikainen and Orponen [MO16]. For all ε > 0, Martikainen and Orponen construct
an example of a probability measure µ supported in the unit square in the plane for which

(1) J̃2(µ, x) ≤ ε for all x ∈ sptµ, and
(2) D1(µ, x) = 0 at µ-a.e. x ∈ R2.

(We caution the interested reader that [MO16] uses different notation for J̃2(µ, x).) Thus,
the measure µ is purely 1-unrectifiable by Corollary C (or Lemma 4.2) despite having

J̃2(µ, ·) uniformly bounded. This shows that 1-rectifiable or purely 1-unrectifiable Radon
measures cannot be characterized in terms of pointwise control of the Jones function

J̃2(µ, ·) alone. Moreover, let us note that since µ is a finite measure with bounded support,∑
Q∈∆(Rn)

β2(µ, 3Q)2 diamQ =

∫
J̃2(µ, x) dµ(x) +

∑
Q∈∆(Rn)\∆1(Rn)

β2(µ, 3Q)2 diamQ <∞

by (1). This shows that in Theorem D, the numbers β∗∗2 (µ,Q), which take into account
how µ looks in cubes R nearby Q, cannot be replaced with the simpler numbers β2(µ, 3Q).
For further discussion in this direction, see Remarks 4.6 and 5.8.

2.1. Organization. In Section 3, we recall a metric characterization of rectifiable curves
in Rn as well as the Analyst’s traveling salesman theorem, which characterizes subsets of
rectifiable curves in Rn in terms of a quadratic sum of Jones’ beta numbers. Both are
indispensable tools in the theory of 1-rectifiable sets and measures. At the end of the
section, we state Proposition 3.6, which is a flexible extension of Jones’ original traveling
salesman construction that we use to draw rectifiable curves capturing positive measure
in §§5 and 7.

The proofs of Theorems A and D are developed over §§4–6. In Section 4, we focus
on proving necessary conditions for a Radon measure to be 1-rectifiable, or equivalently,
sufficient conditions for a Radon measure to be purely 1-unrectifiable. In particular, we
prove that if µ is a Radon measure and Γ is a rectifiable curve in Rn, then J∗2 (µ, x) <∞
at µ-a.e. x ∈ Γ (see Theorem 4.3). This result is some generalization and extension of
the main result of the predecessor [BS15] of the current paper. In Section 5, we establish
sufficient conditions, which guarantee that a Radon measure is 1-rectifiable. In fact, we
introduce beta numbers β∗,cp (µ,Q), which are adapted to cubes R ∈ ∆∗(Q) such that
µ(3R) ≥ c diam 3R, and prove that for every Radon measure µ in Rn,

µ {x ∈ Rn : D1(µ, x) > (3/2)
√
n · c and J∗,cp (µ, x) <∞}

is 1-rectifiable for all c > 0, where J∗,cp (µ, x) is a density-normalized Jones function that
is associated with the beta numbers β∗,cp (µ,Q) (see Theorem 5.1). The proof of our main
result, Theorem A, as well as the proofs of Corollary B, Corollary C, and Theorem D are
recorded in Section 6, using the results of Sections 4 and 5.
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In Section 7, we show how to modify proofs in Section 5 in order to prove that for every
Radon measure in Rn,

µ

{
x ∈ Rn : lim sup

r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞ and J̃p(µ, x) <∞

}
is 1-rectifiable (see Theorem 7.4). Theorem E is then proved by combining this result
with the main result of [BS15].

In the last two sections, §§8 and 9, we give a self-contained proof of Proposition 3.6,
which is modeled on Jones’ traveling salesman construction. The proof of the proposition
gives an algorithm for drawing a rectifiable curve Γ through the leaves V = limk→∞ Vk
of a “tree-like” sequence of 2−k-separated sets Vk. For example, the sets Vk could be
2−k-nets of points in a bounded set E ⊆ Rn (as in the proof of the Analyst’s traveling
salesman theorem) or the sets Vk could be µ centers of mass (of the triples) of dyadic
cubes of side length 2−k (as in the proof of Lemma 5.3). An important technical difference
between Jones’ original construction and Proposition 3.6 is that the latter does not require
Vk+1 ⊇ Vk. The added flexibility provided by Proposition 3.6 is crucial for the proofs of
the sufficient conditions for 1-rectifiable measures, which we present in §§5 and 7.

3. The Analyst’s traveling salesman theorem, again

A rectifiable curve Γ in Rn is the image f([0, 1]) of a Lipschitz map f : [0, 1] → Rn.
As Lipschitz maps are continuous and do not increase Hausdorff measure by more than a
constant multiple, every rectifiable curve Γ is a closed, connected set such thatH1(Γ) <∞.
It is a remarkable fact—and an essential fact for the theory of 1-rectifiable sets and
measures—that the converse of this observation is also true. For a proof of this fact that
is valid in Hilbert space, see [Sch07, Lemma 3.7].

Lemma 3.1. If Γ ⊆ Rn (or Γ inside the Hilbert space `2) is a closed, connected set such
that H1(Γ) <∞, then there exists a Lipschitz map f : [0, 1]→ Rn such that Γ = f([0, 1]).
Moreover, f can be found such that |f(s)− f(t)| ≤ 32H1(Γ)|s− t| for all 0 ≤ s, t ≤ 1.

Corollary 3.2. If Γ1,Γ2, · · · ⊆ Rn is a sequence of uniformly bounded, closed, connected
sets, then there exists a compact, connected set Γ ⊆ Rn and a subsequence (Γkj)

∞
j=1 of

(Γk)
∞
k=1 such that Γkj → Γ in the Hausdorff metric as j →∞ and

H1(Γ) ≤ 32 lim inf
k→∞

H1(Γk)

It is known that the constant 32 in Corollary 3.2 may be replaced with 1 (for example,
see [Fal86, Theorem 3.18]), but knowledge of the optimal constant will not be important
for the development below. The constant 32 in Lemma 3.1 is not optimal and likely may
be replaced with 2. However, once again, knowledge of the optimal constant is not crucial
for the applications to follow.

Next, we recall the Analyst’s traveling salesman theorem, which characterizes subsets of
rectifiable curves in Rn. The theorem was first conceived and proved by P. Jones [Jon90]
for sets in the plane and then extended by Okikiolu [Oki92] for sets in Rn, for all n ≥ 3.
For a formulation of the theorem in infinite-dimensional Hilbert space, see Schul [Sch07].
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Partial information is also known in the Heisenberg group; see Li and Schul [LS16, LS14]
(as well as the previous work by Ferrari, Franchi, and Pajot [FFP07] and Juillet [Jui10]).
For traveling salesman type theorems in graph inverse limit spaces, see G.C. David and
Schul [DS16].

Definition 3.3. Let E ⊆ Rn be any set. For every bounded set Q ⊆ Rn such that
E ∩Q 6= ∅, define the quantity βE(Q) ∈ [0, 1] by

βE(Q) := inf
`

sup
x∈E∩Q

dist(x, `)

diamQ
,

where ` ranges over all lines in Rn. By convention, we set βE(Q) = 0 if E ∩Q = ∅.

Theorem 3.4 (Analyst’s traveling salesman theorem, [Jon90, Oki92]). A bounded set
E ⊆ Rn is a subset of a rectifiable curve in Rn if and only if

β2(E) :=
∑

Q∈∆(Rn)

βE(3Q)2 diamQ <∞.

Moreover, there exists a constant C = C(n) ∈ (1,∞) (independent of E) such that

• diamE + β2(E) ≤ CH1(Γ) for every connected set Γ containing E, and
• there exists a connected set Γ ⊇ E such that H1(Γ) ≤ C(diamE + β2(E)).

The cube dilation factor 3 appearing in Theorem 3.4 is somewhat arbitrary and may
be replaced with any value strictly greater than 1. In particular, in §4, we need the
“necessary” half of the Analyst’s traveling salesman theorem with a dilation factor strictly
greater than 3. For a derivation of Corollary 3.5 from Theorem 3.4, see [BS15, §2].

Corollary 3.5. For all n ≥ 2 and 3 < a <∞, there is a constant C ′ = C ′(n, a) ∈ (1,∞)
such that if E ⊆ Rn is bounded and Γ is a connected set containing E, then∑

Q∈∆(Rn)

βE(aQ)2 diamQ ≤ C ′H1(Γ).

The following proposition is modeled on and is some extension of a lemma from [JLS]
(currently in preparation by P. Jones, G. Lerman, and the second author of this paper)
and has roots in P. Jones’ proof of the Analyst’s traveling salesman theorem from [Jon90].
The variant in [JLS] is a criterion for constructing Lipschitz graphs, whereas Proposition
3.6 is a criterion for constructing rectifiable curves. For a related criterion for constructing
bi-Lipschitz surfaces, see [DT12, Theorem 2.5]. One technical difference between Jones’
original construction and Proposition 3.6 is that in the latter we do not assume Vk+1 ⊇ Vk.
This added flexibility is crucial for our applications in sections 5 and 7 below.

Proposition 3.6. Let n ≥ 2, let C? > 1, let x0 ∈ Rn, and let r0 > 0. Let (Vk)
∞
k=0 be a

sequence of nonempty finite subsets of B(x0, C
?r0) such that

(VI) distinct points v, v′ ∈ Vk are uniformly separated: |v − v′| ≥ 2−kr0;
(VII) for all vk ∈ Vk, there exists vk+1 ∈ Vk+1 such that |vk+1 − vk| < C?2−kr0; and,
(VIII) for all vk ∈ Vk (k ≥ 1), there exists vk−1 ∈ Vk−1 such that |vk−1 − vk| < C?2−kr0.
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Suppose that for all k ≥ 1 and for all v ∈ Vk we are given a straight line `k,v in Rn and a
number αk,v ≥ 0 such that

(3.1) sup
x∈(Vk−1∪Vk)∩B(v,65C?2−kr0)

dist(x, `k,v) ≤ αk,v2
−kr0

and

(3.2)
∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0 <∞.

Then the sets Vk converge in the Hausdorff metric to a compact set V ⊆ B(x0, C?r0) and

there exists a compact, connected set Γ ⊆ B(x0, C?r0) such that Γ ⊇ V and

H1(Γ) .n,C? r0 +
∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0.(3.3)

Remark 3.7. The “sufficient” half of the Analyst’s traveling salesman theorem is an
application of Proposition 3.6. To see this, suppose that E ⊆ Rn is a bounded set
with diameter r0 > 0. For each k ≥ 0, let Vk be a maximal subset of E such that
|v − v′| ≥ 2−kr0 for all distinct v, v′ ∈ Vk. Then conditions (VI), (VII), and (VIII) of
Proposition 3.6 hold with C? = 2. For each k ≥ 1 and v ∈ Vk, let Q be a minimal
dyadic cube such that v ∈ Q and 3Q ⊇ B(v, 65C?2−kr0) and let `k,v be a line for which
supx∈E∩3Q dist(x, `k,v) ≤ 2βE(3Q) diam 3Q ∼n βE(3Q)2−kr0. Then

sup
x∈(Vk−1∪Vk)∩B(v,65C?2−kr0)

dist(x, `k,v) ≤ C(n)βE(3Q)2−kr0 =: αk,v2
−kr0.

Each cube Q ∈ ∆(Rn) can be associated to the pair (k, v) in this way for at most C(n)
values of k ≥ 1 and v ∈ Vk by (VI). Thus, by Proposition 3.6, there exists a compact,
connected set Γ ⊆ Rn containing V := limk→∞ Vk = E with

H1(Γ) .n r0 +
∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0 .n diamE +
∑

Q∈∆(Rn)

βE(3Q)2 diamQ.

The proof of Proposition 3.6 is deferred to §§8 and 9, which are independent of §§4–7.

4. Necessity: µ is 1-rectifiable implies D1(µ, x) > 0 and J∗2 (µ, x) <∞ µ-a.e.

Recall from the introduction that m-rectifiable measures have positive lower Hausdorff
m-density almost everywhere.

Lemma 4.1 ([BS15, Lemma 2.7]). Let µ be a Radon measure on Rn and let 1 ≤ m ≤ n−1.
If µ is m-rectifiable, then Dm(µ, x) > 0 at µ-a.e. x ∈ Rn.

Lemma 4.1 is a consequence of the connection between lower Hausdorff m-density of a
measure and m-dimensional packing measure Pm. See [BS15] for details. By inspection,
the proof in [BS15] shows that µ({x ∈ f([0, 1]m) : Dm(µ, x) = 0}) = 0 for every Lipschitz
map f : [0, 1]m → Rn. Thus, we have the following stronger formulation of Lemma 4.1.

Lemma 4.2. Let µ be a Radon measure on Rn and let 1 ≤ m ≤ n− 1. Then the measure
µ {x ∈ Rn : Dm(µ, x) = 0} is purely m-unrectifiable.
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Our goal in the remainder of the section is to prove the following theorem.

Theorem 4.3. Let n ≥ 2. If µ is a Radon measure on Rn and Γ is a rectifiable curve,
then the function J∗2 (µ, ·) ∈ L1(µ Γ) and J∗2 (µ, x) <∞ at µ-a.e. x ∈ Γ.

At the core of Theorem 4.3 is the following quantitative statement, which is some
extension and generalization of [BS15, Proposition 3.1]. In particular, let us stress that
the lower Ahlfors regularity condition on E ⊆ Γ has been removed.

Proposition 4.4. Let n ≥ 2. If ν is a finite Borel measure on Rn and Γ is a rectifiable
curve, then

(4.1)
∑

Q∈∆(Rn)

ν(Γ∩1600
√
nQ)>0

β∗2(ν,Q)2 diamQ .n H1(Γ) + ν(Rn \ Γ).

Proof. The proof that we present is an adaptation of the proof of Proposition 3.1 in [BS15],
the forerunner to this paper by the same name. For clarity, we develop the part of the
proof that needs to be altered.

Fix constants ε > 0 and a > 3 to be specified later, ultimately depending on only the
ambient dimension n. Define two families ∆Γ and ∆2 of dyadic cubes in Rn, as follows.

∆Γ = {Q ∈ ∆(Rn) : ν(Γ ∩ 1600
√
nQ) > 0 and εβ∗2(ν,Q) ≤ βΓ(aQ)}, and

∆2 = {Q ∈ ∆(Rn) : ν(Γ ∩ 1600
√
nQ) > 0 and βΓ(aQ) < εβ∗2(ν,Q)}.

Note that ∆Γ and ∆2 consist of the cubes appearing in (4.1) for which either βΓ(aQ) or
εβ∗2(ν,Q) is the dominant quantity, respectively. It follows that
(4.2) ∑

Q∈∆(Rn)

ν(Γ∩1600
√
nQ)>0

β∗2(ν,Q)2 diamQ ≤ ε−2
∑
Q∈∆Γ

βΓ(aQ)2 diamQ︸ ︷︷ ︸
I

+
∑
Q∈∆2

β∗2(ν,Q)2 diamQ︸ ︷︷ ︸
II

.

We shall estimate the terms I and II separately. The former will be controlled by H1(Γ)
and the latter will be controlled by ν(Rn \ Γ).

To estimate I, we note that by Jones’ (when n = 2) and by Okikiolu’s (when n ≥ 3)
traveling salesman theorems (in the form of Corollary 3.5),

(4.3) I ≤ ε−2
∑

Q∈∆(Rn)

βΓ(aQ)2 diamQ ≤ C ′ε−2H1(Γ),

where C ′ is a finite constant determined by n and a.
In order to estimate II, first decompose Rn \ Γ into a family T of Whitney cubes with

the following specifications.

• The union over all sets in T is Rn \ Γ.
• Each set in T is a half open cube in Rn of the form [a1, b1)× · · · × [an, bn).
• If T1, T2 ∈ T , then either T1 = T2 or T1 ∩ T2 = ∅.
• If T ∈ T , then dist(T,Γ) ≤ diamT ≤ 4 dist(T,Γ).
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(To obtain this decomposition, one can modify the standard Whitney decomposition in
Stein’s book [Ste70] by replacing each closed cube with the corresponding half open cube.)
Here dist(T,Γ) = infx∈T infy∈Γ |x− y|. For each k ∈ Z, we define

Tk = {T ∈ T : 2−k−1 < dist(T,Γ) ≤ 2−k}.

Also, for every cube Q, we set T (Q) = {T ∈ T : ν(Q ∩ T ) > 0} and Tk(Q) = Tk ∩ T (Q).
First we will estimate β∗2(ν,Q)2 diamQ for each Q ∈ ∆2 and then we will estimate II.

Fix Q ∈ ∆2, say with sideQ = 2−k0 , and pick any line ` in Rn such that

(4.4) sup
z∈Γ∩aQ

dist(z, `) ≤ 2βΓ(aQ) diam aQ < 2εβ∗2(ν,Q) diam aQ = 2aεβ∗2(ν,Q) diamQ.

We will estimate β∗2(ν,Q)2 from above using `:

β∗2(ν,Q)2 ≤ max
R∈∆∗(Q)

β2(ν, 3R, `)2 min

{
ν(3R)

diam 3R
, 1

}
.

Fix a cube R ∈ ∆∗(Q) nearby Q and recall that diamQ ≤ diamR ≤ 2 diamQ. For ease
of notation, set mR = min{ν(3R)/ diam 3R, 1}. To estimate β2(ν, 3R, `)2mR from above,
divide 3R into two sets NR (“near”) and FR (“far”), where

NR = {x ∈ 3R : dist(x, `) ≤ 2aεβ∗2(ν,Q) diamQ}

and

FR = {x ∈ 3R : dist(x, `) > 2aεβ∗2(ν,Q) diamQ}.
It immediately follows that

β2(ν, 3R, `)2mR ≤
∫
NR

(
dist(x, `)

diam 3R

)2
dν(x)

ν(3R)
+

∫
FR

(
dist(x, `)

diam 3R

)2

mR
dν(x)

ν(3R)

≤ 4

9
a2ε2β∗2(ν,Q)2 +

∫
FR

(
dist(x, `)

diam 3R

)2

mR
dν(x)

ν(3R)
.

By the triangle inequality and (4.4), we have

dist(x, `) ≤ dist(x,Γ ∩ aQ) + 2aεβ∗2(ν,Q) diamQ.

Using this and the inequality (p+ q)2 ≤ 2p2 + 2q2, it follows that

β2(ν, 3R, `)2mR ≤
4

3
a2ε2β∗2(ν,Q)2 + 2

∫
FR

(
dist(x,Γ ∩ aQ)

diam 3R

)2

mR
dν(x)

ν(3R)
.

Now, for each x ∈ FR ⊆ 3R, we have dist(x,Γ) ≤ diam 1600
√
nQ, because 3R ⊆

1600
√
nQ and ν(Γ ∩ 1600

√
nQ) > 0. Hence, taking the constant

a := 1600
√
n+ 3200n

(so a = 1600
√
n + 2 diam 1600

√
nQ) ensures that dist(x,Γ ∩ aQ) = dist(x,Γ) for all

x ∈ FR. Thus,

β2(ν, 3R, `)2mR ≤
4

3
a2ε2β∗2(ν,Q)2 + 2

∫
FR

(
dist(x,Γ)

diam 3R

)2

mR
dν(x)

ν(3R)
.
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Now, letting R range over ∆∗(Q) and declaring that ε be chosen so that (4/3)a2ε2 = 1/3,
we conclude that

β∗2(ν,Q)2 ≤ max
R∈∆∗(Q)

3

∫
FR

(
dist(x,Γ)

diam 3R

)2

mR
dν(x)

ν(3R)
.

Next, because mR/ν(3R) ≤ 1/ diam 3R ≤ 1/ diam 3Q = 1/3 diamQ, we obtain

(4.5) β∗2(ν,Q)2 diamQ ≤ max
R∈∆∗(Q)

∫
FR

(
dist(x,Γ)

diam 3R

)2

dν(x).

Note that if x ∈ FR for some R ∈ ∆∗(Q), then x 6∈ Γ by (4.4) and 3R ⊆ aQ. Thus, we
may employ the Whitney decomposition T of Rn \ Γ to estimate the right hand side of
(4.5):

β∗2(ν,Q)2 diamQ ≤ max
R∈∆∗(Q)

∑
T∈T (3R)

sup
x∈T

(
dist(x,Γ)

diamQ

)2

ν(T ∩ 3R).

Because 3R ⊆ aQ for all R ∈ ∆∗(Q) by our choice of a above, it follows that

β∗2(ν,Q)2 diamQ ≤
∑

T∈T (aQ)

sup
x∈T

(
dist(x,Γ)

diamQ

)2

ν(T ∩ aQ).

Recall that sideQ = 2−k0 . If T ∈ Tk(aQ), then by bounding the distance between a point
in T ∩ aQ and a point in Γ ∩ 1600

√
nQ, we observe that

2−k−1 ≤ dist(T,Γ) ≤ diam aQ = a
√
n sideQ = a

√
n2−k0 .

It follows that k ≥ k1 := k0 − 1− blog2 a
√
nc whenever T ∈ Tk(aQ). Also, if T ∈ Tk and

x ∈ T , then dist(x,Γ) ≤ dist(T,Γ) + diamT ≤ 5 dist(T,Γ) ≤ 5 · 2−k. Therefore,

(4.6) β∗2(ν,Q)2 diamQ ≤ 25
∞∑

k=k1

∑
T∈Tk(aQ)

(
2−k

diamQ

)2

ν(T ∩ aQ).

This estimate is valid for every cube Q ∈ ∆2. We emphasize that equation (4.6) is the
analogue of [BS15, (3.8)] in the proof of [BS15, Proposition 3.1].

Equipped with (4.6), one may now repeat the argument appearing after [BS15, (3.8)]
in the proof of [BS15, Proposition 3.1], mutatis mutandis, to obtain

(4.7) II .n ν(Rn \ Γ).

Combining (4.2), (4.3) and (4.7), we obtain (4.1), as desired. �

Remark 4.5. The proof of Proposition 4.4 is robust in the sense that it does not overly
rely on the specific geometry or combinatorics of sets in ∆∗(Q). For example, a version
of the proposition holds if the triples 3R of cubes R ∈ ∆∗(Q) appearing the definition
of β∗2(µ,Q) are replaced with a family of balls that are nearby Q and whose diameters
are comparable to the diameter of Q, provided that all relevant constants are chosen
uniformly across Q ∈ ∆(Rn). We leave details to the interested reader.
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Proof of Theorem 4.3. Let µ be a Radon measures on Rn and let Γ be a rectifiable curve.
Then∫

Γ

J∗2 (µ, x) dµ(x) =
∑

Q∈∆1(Rn)

β∗2(µ,Q)2 diamQ

µ(Q)

∫
Γ

χQ(x) dµ(x)

=
∑

Q∈∆1(Rn)

µ(Γ∩Q)>0

β∗2(µ,Q)2 diamQ
µ(Γ ∩Q)

µ(Q)
≤

∑
Q∈∆1(Rn)

µ(Γ∩Q)>0

β∗2(µ,Q)2 diamQ.(4.8)

Let K be the closure of the union of cubes⋃
Q∈∆1(Rn)

µ(Γ∩Q)>0

⋃
R∈∆∗(Q)

3R,

which is compact since Γ is bounded. Then the restriction ν = µ K is finite and

(4.9)
∑

Q∈∆1(Rn)

µ(Γ∩Q)>0

β∗2(µ,Q)2 diamQ =
∑

Q∈∆1(Rn)

ν(Γ∩Q)>0

β∗2(ν,Q)2 diamQ .n H1(Γ) + ν(Rn \ Γ) <∞

by Proposition 4.4. Chaining together inequalities in (4.8) and (4.9), we conclude that
J∗2 (µ, ·) ∈ L1(µ Γ). Therefore, J∗2 (µ, x) <∞ at µ-a.e. x ∈ Γ, as well. �

Remark 4.6. Recall from (2.8) that if µ is a Radon measure on Rn and Q ∈ ∆(Rn), then

β∗∗2 (µ,Q) = inf
`

max {β2(µ, 3R, `) : R ∈ ∆∗(Q)} ,

where the infimum runs over all straight lines in Rn. Define the density-normalized Jones
function J∗∗2 (µ, x) associated to the numbers β∗∗2 (µ,Q) by

J∗∗2 (µ, x) :=
∑

Q∈∆1(Rn)

β∗∗2 (µ,Q)2 diamQ

µ(Q)
χQ(x).

In Theorem 4.3, we showed that if µ is a Radon measure and Γ is a rectifiable curve,
then J∗2 (µ, x) < ∞ at µ-a.e. x ∈ Γ. However, it is currently an open problem to decide
whether µ is a Radon measure and Γ is a rectifiable curve imply that J∗∗2 (µ, x) < ∞ at
µ-a.e. x ∈ Γ. For the motivation for this problem, see Remark 5.8.

5. Sufficiency: D1(µ, x) > 0 and J∗p (µ, x) <∞ µ-a.e. implies µ is 1-rectifiable

Our goal in this section is to show that D1(µ, ·) > 0 almost everywhere and J∗p (µ, ·) <∞
almost everywhere are together a sufficient condition for a Radon measure µ on Rn to be
1-rectifiable. As an intermediate step, we first introduce and work with beta numbers and
weighted Jones functions that are adapted to cubes with uniformly large (coarse) density.

Let µ be a Radon measure on Rn, let 1 ≤ p < ∞, and let c > 0. For all dyadic cubes
Q ∈ ∆(Rn), we define β∗,cp (µ,Q) ∈ [0, 1] by

β∗,cp (µ,Q)2 = inf
`

max
{
βp(µ, 3R, `)

2 min{c, 1} : R ∈ ∆∗(Q) and

µ(3R) ≥ c diam 3R
}
,

(5.1)
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where in the infimum ` ranges over all straight lines in Rn. If there do not exist cubes
R ∈ ∆∗(Q) such that µ(3R) ≥ c diam 3R, then by convention we let β∗,cp (µ, x) = 0.
Evidently, for every measure µ and dyadic cube Q, we have the comparison

β∗,cp (µ,Q) ≤ β∗p(µ,Q) for all c > 0.

The c-adapted Lp density-normalized Jones function J∗,cp (µ, x) is defined by

(5.2) J∗,cp (µ, x) =
∑

Q∈∆1(Rn)

β∗,cp (µ,Q)2 diamQ

µ(Q)
χQ(x) ∈ [0,∞] for all x ∈ Rn.

In particular, if J∗p (µ, x) <∞ µ-a.e., then J∗,cp (µ, x) <∞ for all c > 0, at µ-a.e. x ∈ Rn.

Theorem 5.1. Let µ be a Radon measure on Rn, let 1 ≤ p <∞, and let c > 0. Then

µ {x ∈ Rn : D1(µ, x) > (3/2)
√
n · c and J∗,cp (µ, x) <∞}

is 1-rectifiable.

In order to construct rectifiable curves that capture measure in Theorem 5.1, we will
use Proposition 3.6 in conjunction with the following observation due to Lerman [Ler03].
As stated, Lemma 5.2 is a small variation of [Ler03, Lemma 6.4].

Lemma 5.2. Let n ≥ 2 and let 1 ≤ p <∞. Let µ be a Radon measure on Rn, let E be a
Borel set of positive diameter such that 0 < µ(E) <∞, and let

zE :=

∫
E

z
dµ(z)

µ(E)
∈ Rn

denote the center of mass of E with respect to µ. For every straight line ` in Rn,

dist(zE, `) ≤ βp(µ,E, `) diamE.

Proof. For every affine subspace ` in Rn, the function dist(·, `)p is convex provided that
1 ≤ p <∞. Thus,

dist(zE, `)
p = dist

(∫
E

z
dµ(z)

µ(E)
, `

)p
≤
∫
E

dist(z, `)p
dµ(z)

µ(E)
= βp(µ,E, `)

p(diamE)p

by Jensen’s inequality. �

Let us define a tree of dyadic cubes to be a set T of dyadic cubes with unique maximal
element Q0 (ordered by inclusion) such that if R ∈ T , then Q ∈ T for all dyadic cubes
R ⊆ Q ⊆ Q0. Denote Q0 by Top(T ). An infinite branch of T is defined to be a chain
Q0 ⊇ Q1 ⊇ Q2 ⊇ . . . of cubes in T such that sideQl = 2−l sideQ0 for all l ≥ 0. We define
the set Leaves(T ) of leaves of T to be

Leaves(T ) :=
⋃{

∞⋂
i=0

Qi : Q0 ⊇ Q1 ⊇ Q2 ⊇ · · · is an infinite branch of T

}
.

The following lemma is the heart of Theorem 5.1.
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Lemma 5.3 (drawing rectifiable curves through the leaves of lower Ahlfors regular trees).
Let n ≥ 2, let 1 ≤ p <∞, and let c > 0. Let µ be a Radon measure on Rn. If T is a tree
of dyadic cubes such that

(5.3)
µ(3Q)

diam 3Q
≥ c for all Q ∈ T , and

(5.4) S∗,cp (µ, T ) :=
∑
Q∈T

β∗,cp (µ,Q)2 diamQ <∞,

then there exists a rectifiable curve Γ in Rn such that Γ ⊇ Leaves(T ) and

(5.5) H1(Γ) .n diamTop(T ) + max{c−1, 1}S∗,cp (µ, T ).

Proof. Applying a dilation and a translation, we may assume without loss of generality
that Top(T ) = [0, 1)n. By deleting irrelevant cubes from T , we may also assume without
loss of generality that every cube Q ∈ T belongs to an infinite branch of T . To proceed,
we will aim to use Proposition 3.6. Set parameters

C? = 4 and r0 = 3 diamTop(T ) = diam[−1, 2)n = 3
√
n.

Below we will freely use the fact that diam 3Q = r0 sideQ for all Q ∈ T .
For each Q ∈ T , let z3Q denote the µ center of mass of 3Q, i.e.

z3Q =

∫
3Q

z
dµ(z)

µ(3Q)
.

For each k ≥ 0, let Zk = {z3Q : Q ∈ T and sideQ = 2−k} and choose Vk to be any
maximal 2−kr0-separated subset of Zk. Pick any x0 ∈ 3Q0. Then

Vk ⊆ Zk ⊆ 3Top(T ) ⊆ B(x0, r0) ⊆ B(x0, C
?r0).

Also note that Vk satisfies condition (VI) of Proposition 3.6 by the definition of Vk.
To check condition (VII), let k ≥ 0 and let v ∈ Vk, say v = z3Q for some Q ∈ T

with sideQ = 2−k. Recall that by assumption every cube in T belongs to an infinite
branch of T . Hence there exists R ∈ T such that R ⊆ Q and sideR = 1

2
sideQ. By

maximality, there exists v′ = z3P ∈ Vk+1 for some P ∈ T such that sideP = sideR and
|z3R − v′| < 2−(k+1)r0. It follows that

|v′ − v| < |v′ − z3R|+ |z3R − v| ≤ 2−(k+1)r0 + diam 3Q =
3

2
· 2−kr0 ≤ C?2−kr0.

Thus, condition (VII) is satisfied.
To check condition (VIII), let k ≥ 1 and let v ∈ Vk, say v = z3Q for some Q ∈ T

with sideQ = 2−k. Let R denote the parent of Q, which necessarily belongs to T . By
maximality, there exists v′ = z3P ∈ Vk−1 for some P ∈ T such that sideP = sideR and
|z3R − v′| < 2−(k−1)r0. It follows that

|v − v′| < |v′ − z3R|+ |z3R − v| ≤ 2−(k−1)r0 + diam 3R ≤ 4 · 2−kr0 ≤ C?2−kr0.

Thus, condition (VIII) is satisfied.
Now, for each k ≥ 0 and v ∈ Vk, let Qk,v ∈ T denote a dyadic cube of side length 2−k

such that v = z3Qk,v
. Next, we will choose lines `k,v in Rn and numbers αk,v ≥ 0 to use
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with Proposition 3.6. Let k ≥ 1 and v ∈ Vk. By definition of β∗,cp (µ,Qk,v), we can choose
a line `k,v such that

max{βp(µ, 3R, `k,v) : R ∈ ∆∗(Q) and µ(3R) ≥ c diam 3R}

≤ 2 max{c−1/2, 1}β∗,cp (µ,Qk,v).
(5.6)

Note that if x ∈ Vj ∩B(v, 65C?2−kr0) for j = k or j = k−1, then µ(3Qj,x) ≥ c diam 3Qj,x

(since Qj,x ∈ T ) and 3Qj,x ⊆ 1600
√
nQk,v (with room to spare). By Lemma 5.2 and (5.6),

it follows that for any x ∈ Vj ∩B(v, 65C?2−kr0) with j = k or j = k − 1,

dist(x, `k,v) ≤ βp(µ, 3Qj,x, `k,v) diam 3Qj,x

≤ 4 max{c−1/2, 1}β∗,cp (µ,Qk,v) · 2−kr0 =: αk,v2
−kr0.

Therefore, the lines `k,v and numbers αk,v satisfy (3.1). Furthermore,

∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0 ≤ 48 max{c−1, 1}
∑
Q∈T

β∗,cp (µ,Q)2 diamQ

. max{c−1, 1}S∗,cp (µ, T ) <∞.

Thus, (3.2) holds, as well.
By Proposition 3.6, there exists a connected, compact set Γ ⊆ Rn such that

H1(Γ) .n,C? r0 +
∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0 .n diamTop(T ) + max{c−1, 1}S∗,cp (µ, T )

and Γ ⊇ V = limk→∞ Vk. By Lemma 3.1, Γ is a rectifiable curve. It remains to check
that Γ ⊇ Leaves(T ). Let y ∈ Leaves(T ), say y = limk→∞ yk for some sequence of points
yk ∈ Qk, for some infinite branch Q0 ⊇ Q1 ⊇ Q2 ⊇ . . . of T . Let zk = z3Qk

denote the
center of mass of 3Qk and let vk ∈ Vk be any point which minimizes the distance to zk.
On one hand, |yk − zk| ≤ 2−kr0 = diam 3Qk, since yk, zk ∈ 3Qk. On the other hand,
|zk − vk| ≤ 2−kr0 by maximality of Vk in Zk. Thus, by the triangle inequality,

|vk − y| ≤ |vk − zk|+ |zk − yk|+ |yk − y| ≤ 2r0 · 2−k + |yk − y| for all k ≥ 0,

whence y = limk→∞ vk ∈ limk→∞ Vk ⊆ Γ. Therefore, since y ∈ Leaves(T ) was arbitrary,
Γ ⊇ Leaves(T ). �

The specialization to trees of lower Ahlfors regular cubes in the previous lemma can
be avoided by making an assumption on the behavior of the measure in all nearby cubes.
Recall from the introduction that β∗∗p (µ,Q) = inf` maxR∈∆∗(Q) βp(µ, 3R, `).

Lemma 5.4 (drawing rectifiable curves through the leaves of a tree). Let n ≥ 2, let
1 ≤ p <∞, and let µ be a Radon measure on Rn. If T is a tree of dyadic cubes such that

(5.7) S∗∗p (µ, T ) :=
∑
Q∈T

β∗∗p (µ,Q)2 diamQ <∞,

then there exists a rectifiable curve Γ in Rn such that Γ ⊇ Leaves(T ) and

(5.8) H1(Γ) .n diamTop(T ) + S∗∗p (µ, T ).
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Proof. The proof follows the same pattern as the proof of Lemma 5.3. However, instead
of choosing `k,v according to (5.6), one uses the definition of β∗∗p (µ,Q) to choose a line
`k,v such that

(5.9) max{βp(µ, 3R, `k,v) : R ∈ ∆∗(Q)} ≤ 2 max β∗∗p (µ,Qk,v).

We leave the details to the reader. �

Corollary 5.5. Let 1 ≤ p <∞ and let µ be a finite measure on Rn with bounded support.
If S∗∗p (µ) =

∑
Q∈∆(Rn) β

∗∗
p (µ,Q)2 diamQ < ∞, then there exists a rectifiable curve Γ in

Rn such that µ(Rn \ Γ) = 0 and H1(Γ) .n diam sptµ+ S∗∗p (µ).

Proof. Let Q denote the set of maximal cubes Q ∈ ∆(Rn) such that µ(3Q) > 0 and
sideQ ≤ diam sptµ. Note that #Q .n 1. For each Q0 ∈ Q, define

TQ0 := {Q ∈ ∆(Rn) : Q ⊆ Q0 and µ(3Q) > 0}.

Then TQ0 is a tree of dyadic cubes with Leaves(TQ0) = Q0 ∩ sptµ and S∗∗p (µ, TQ0) ≤
S∗∗p (µ) < ∞. By Lemma 5.4, there is a rectifiable curve ΓQ0 in Rn such that ΓQ0 ⊇
Q0 ∩ sptµ and

H1(ΓQ0) .n diamTop(TQ0) + S∗∗p (µ, TQ0) .n diam sptµ+ S∗∗p (µ).

Because sptµ ⊆
⋃
Q0∈Q

(
Q0 ∩ sptµ

)
and #Q .n 1, we can find a rectifiable curve Γ in

Rn such that Γ ⊇
⋃
Q0∈Q ΓQ0 ⊇ sptµ and

H1(Γ) .n diam sptµ+
∑
Q0∈Q

H1(ΓQ0) .n diam sptµ+ S∗∗p (µ).

Finally, note that µ(Rn \ Γ) ≤ µ(Rn \ sptµ) = 0. �

Next, we state and prove a localization lemma for measure-normalized sums over trees
of dyadic cubes, which is modeled on [BS16, Lemma 3.2]. Let T be a tree of dyadic cubes
and let b : T → [0,∞). For each Radon measure µ on Rn, define the µ-normalized sum
function ST ,b(µ, x) by

ST ,b(µ, x) :=
∑
Q∈T

b(Q)

µ(Q)
χQ(x) ∈ [0,∞] for all x ∈ Rn,

where we interpret 0/0 = 0 and 1/0 =∞.

Lemma 5.6 (localization lemma). Let T be a tree of dyadic cubes, let b : T → [0,∞),
and let µ be a Radon measure on Rn. For all N <∞ and ε > 0, there exist a partition of
T into a set Good(T , N, ε) of good cubes and a set Bad(T , N, ε) of bad cubes with the
following the properties.

(1) Either Good(T , N, ε) = ∅ or Good(T , N, ε) is a tree of dyadic cubes with

Top(Good(T , N, ε)) = Top(T ).

(2) Every child of a bad cube is a bad cube: if Q and R belong to T , R ∈ Bad(T , N, ε),
and Q ⊆ R, then Q ∈ Bad(T , N, ε).



22 MATTHEW BADGER AND RAANAN SCHUL

(3) The sets A := {x ∈ Top(T ) : ST ,b(µ, x) ≤ N} and

A′ := A \
⋃

Q∈Bad(T ,N,ε)

Q = A ∩ Leaves(Good(T , N, ε))

have comparable measure: µ(A′) ≥ (1− εµ(Top(T )))µ(A).
(4) The sum of the function b over good cubes is finite:∑

Q∈Good(T ,N,ε)

b(Q) < N/ε.

Proof. Suppose that T , µ, b, N , ε, A, and A′ are given as above. If µ(A) = 0, then we
may declare every dyadic cube Q ∈ T to be a bad cube and the conclusion of the lemma
holds trivially. Thus, suppose that µ(A) > 0. Declare that a dyadic cube Q ∈ T is a bad
cube if there exists a dyadic cube R ∈ T such that Q ⊆ R and µ(A ∩ R) ≤ εµ(A)µ(R).
We call a dyadic cube Q ∈ T a good cube if Q is not a bad cube. Properties (1) and (2)
are immediate. To check property (3), observe that

µ(A \ A′) ≤
∑

maximal Q∈Bad(T ,N,ε)

µ(A ∩Q)

≤ εµ(A)
∑

maximal Q∈Bad(T ,N,ε)

µ(Q) ≤ εµ(A)µ(Top(T )),

where the last inequality follows because the maximal bad cubes are pairwise disjoint.
Let us emphasize that this uses our assumption that T is composed of half open cubes.
It follows that

µ(A′) = µ(A)− µ(A \ A′) ≥ (1− εµ(Top(T )))µ(A).

Thus, property (3) holds. Finally, since ST ,b(µ, x) ≤ N for all x ∈ A,

Nµ(A) ≥
∫
A

ST ,b(µ, x) dµ(x) ≥
∑
Q∈T

b(Q)
µ(A ∩Q)

µ(Q)
> εµ(A)

∑
Q∈Good(T ,N,ε)

b(Q),

where we interpret µ(A ∩Q)/µ(Q) = 0 if µ(Q) = 0. Because µ(A) > 0, it follows that∑
Q∈Good(T ,N,ε)

b(Q) <
N

ε
.

This verifies property (4). �

Remark 5.7. When T ⊆ {Q ∈ ∆1(Rn) : Q ⊆ Q0} for some dyadic cube Q0 of side length
1 and b(Q) ≡ β∗,cp (µ,Q)2 diamQ, the function ST ,b(µ, x) ≤ J∗,cp (µ, x) for all x ∈ Q0.

We now have all the ingredients required to prove Theorem 5.1.

Proof of Theorem 5.1. Let µ be a Radon measure on Rn, let 1 ≤ p < ∞, and let c > 0.
Our goal is to prove that the measure

µ {x ∈ Rn : D1(µ, x) > (3/2)
√
n · c and J∗,cp (µ, x) <∞}
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is 1-rectifiable. For every x ∈ Rn such that D1(µ, x) > (3/2)
√
n · c, there exists a

radius rx > 0 such that µ(B(x, r)) ≥ 3
√
n · cr for all r ≤ rx, because D1(µ, x) =

lim infr→0 µ(B(x, r))/2r. Hence

µ(3Q) ≥ µ(B(x, sideQ)) ≥ 3
√
n · c sideQ = c diam 3Q

whenever D1(µ, x) > (3/2)
√
n ·c and Q is a dyadic cube such that x ∈ Q and sideQ ≤ rx.

Thus, if D1(µ, x) > (3/2)
√
n · c, then x belongs to the leaves of the tree

Tx :=
{
Q ∈ ∆1(Rn) : Q ⊆ Qx and

µ(3R) ≥ c diam 3R for all R ∈ ∆(Rn) such that Q ⊆ R ⊆ Qx

}
,

whereQx is defined to be the maximal dyadic cube containing x with sideQx ≤ min{rx, 1}.
In fact, note that x ∈ Top(Tx) ∩ Leaves(Tx) and the tree Tx satisfies condition (5.3) of
Lemma 5.3. Because each tree Tx is determined by Qx and ∆1(Rn) is countable, the
collection {Tx : D1(µ, x) > (3/2)

√
n · c} of trees is enumerable, say

{Tx : D1(µ, x) > (3/2)
√
n · c} = {Txi : i = 1, 2, . . . }

for some sequence of points such that D1(µ, xi) > (3/2)
√
n · c for all i ≥ 1. Therefore,

since

{x ∈ Rn : D1(µ, x) > (3/2)
√
n · c and J∗,cp (µ, x) <∞}

⊆
∞⋃
i=1

∞⋃
j=1

{x ∈ Top(Txi) : J∗,cp (µ, x) ≤ j},

it suffices to prove that the measure µ Ay,N is 1-rectifiable for all y ∈ Rn such that
D1(µ, y) > (3/2)

√
n · c and for all N <∞, where Ay,N := {x ∈ Top(Ty) : J∗,cp (µ, x) ≤ N}.

Fix y ∈ Rn such that D1(µ, y) > (3/2)
√
n · c and fix N < ∞. Set ηy := µ(Top(Ty)).

Given 0 < ε < ηy, let Ty,N,ε := Good(Ty, N, ε) ⊆ Ty denote the tree given by Lemma 5.6
applied with T = Ty and b(Q) ≡ β∗p(µ,Q)2 diamQ (see Remark 5.7). Then Ty,N,ε inherits
property (5.3) from Ty and, by Lemma 5.6,

S∗,cp (µ, Ty,N,ε) <
N

ε

and

µ(Ay,N ∩ Leaves(Ty,N,ε)) ≥ (1− εηy)µ(Ay,N).

Thus, by Lemma 5.3, there exists a rectifiable curve Γy,N,ε in Rn such that Γy,N,ε ⊇
Leaves(Ty,N,ε). In particular, Γy,N,ε captures a large portion of the mass of Ay,N :

µ(Ay,N \Γy,N,ε) ≤ µ(Ay,N)−µ(Ay,N ∩Γy,N,ε) ≤ µ(Ay,N)− (1− εηy)µ(Ay,N) = εηyµ(Ay,n).

(Of course, Lemma 5.3 also gives a quantitative bound on the length of Γy,N,ε depending
only on n, c, N , ε, and diamTop(Ty), but we do not need it here.) To finish, choose
0 < εk < ηy for all k ≥ 1 so that limk→∞ εk = 0. Then

µ

(
Ay,N \

∞⋃
k=1

Γy,N,εk

)
≤ inf

k≥1
µ(Ay,N \ Γy,N,εk) ≤ ηyµ(Ay,N) inf

k≥1
εk = 0.
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Therefore, µ Ay,N is 1-rectifiable. As noted above, this completes the proof. �

Remark 5.8. By substituting Lemma 5.3 in the proof of Theorem 5.1 with Lemma 5.4,
one can verify that if µ is a Radon measure on Rn and 1 ≤ p <∞, then the measure

µ {x ∈ Rn : J∗∗p (µ, x) <∞}

is 1-rectifiable, where

J∗∗p (µ, x) :=
∑

Q∈∆1(Rn)

β∗∗p (µ,Q)2 diamQ

µ(Q)
χQ(x)

is the density-normalized Jones function associated with the numbers β∗∗p (µ, x). However,
see Remark 4.6.

6. Proof of Theorems A and D

Proof of Theorem A. Let µ be a Radon measure on Rn and let 1 ≤ p ≤ 2. Partition Rn

into two sets

R = {x ∈ Rn : D1(µ, x) > 0 and J∗p (µ, x) <∞}
and

P = {x ∈ Rn : D1(µ, x) = 0 or J∗p (µ, x) =∞},
which are easily verified to be Borel. Since Rn = R ∪ P and R ∩ P = ∅, we have

µ = (µ R) + (µ P ), (µ R) ⊥ (µ P ).

By uniqueness of the decomposition µ = µ1
rect + µ1

pu in Proposition 1.2, to show that

µ1
rect = µ R and µ1

pu = µ P it suffices to prove that the measure µ R is 1-rectifiable
and the measure µ P is purely 1-unrectifiable.

On one hand, since J∗,cp (µ, x) ≤ J∗p (µ, x) for all x ∈ Rn and for all c > 0,

R =
{
x ∈ Rn : D1(µ, x) > 0 and J∗p (µ, x) <∞

}
⊆
∞⋃
i=1

{
x ∈ Rn : D1(µ, x) > (3/2)

√
n/i and J∗,1/ip (µ, x) <∞

}
.

(6.1)

Therefore, µ R is 1-rectifiable by (6.1) and Theorem 5.1. On the other hand, because
J∗p (µ, x) is increasing in p and p ≤ 2,

µ P ≤ µ {x ∈ Rn : D1(µ, x) = 0}+ µ {x ∈ Rn : J∗2 (µ, x) =∞}.

Therefore, µ P is purely 1-unrectifiable by Lemma 4.2 and Theorem 4.3. �

Proof of Corollaries B and C. A measure µ is 1-rectifiable if and only if µ1
pu = 0, and a

measure µ is purely 1-unrectifiable if and only if µ1
rect = 0. Therefore, Corollary B and

Corollary C follow immediately from Theorem A. �

Proof of Theorem D. Let n ≥ 2 and let 1 ≤ p <∞. Let µ be a finite Borel measure with
bounded support. To prove the first statement, suppose that there exists a rectifiable
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curve Γ such that µ(Rn \Γ) = 0. Then sptµ ⊆ Γ, since Γ is closed. For every Q ∈ ∆(Rn),
let `Q be any line such that

dist(x, `Q) ≤ βsptµ(1600
√
nQ) diam 1600

√
nQ for all x ∈ sptµ ∩ 1600

√
nQ.

Then for every dyadic cube Q ∈ ∆(Rn) and nearby cube R ∈ ∆∗(Q),

βp(µ, 3R, `Q)p =

∫
3R

(
dist(x, `Q)

diam 3R

)p
dµ(x)

µ(3R)
≤
(

1600
√
n

3

)p
βsptµ(1600

√
nQ)p.

Hence, since 3R ⊆ 1600
√
nQ for all R ∈ ∆∗(Q),

β∗∗p (µ,Q) ≤ max{βp(µ, 3R, `Q) : R ∈ ∆∗(Q)} .n βsptµ(1600
√
nQ) for all Q ∈ ∆(Rn).

Therefore,

S∗∗p (µ) =
∑

Q∈∆(Rn)

β∗∗p (µ,Q)2 diamQ .n
∑

Q∈∆(Rn)

βsptµ(1600
√
nQ)2 diamQ .n H1(Γ)

by Corollary 3.5.
The second statement is given by Corollary 5.5. �

7. Variations for pointwise doubling measures

In the forerunner [BS15] to this paper, the authors gave a necessary condition for a
Radon measure on Rn to be 1-rectifiable using the L2 density-normalized Jones function

J̃2(µ, x) (see (2.11)).

Theorem 7.1 ([BS15, Theorem A]). If µ is a 1-rectifiable Radon measure on Rn, then

J̃2(µ, x) <∞ at µ-a.e. x ∈ Rn.

Examining the proof of Theorem 7.1 in [BS15], one deduces that
∫
E
J̃2(µ, x) dµ(x) <∞

for every rectifiable curve Γ ⊆ Rn and for every Borel set E ⊆ Rn of the form

E = {x ∈ Γ : µ(B(x, r)) ≥ cr for all 0 < r ≤ r0} for some c > 0 and r0 > 0.

Thus, the proof of Theorem 7.1 yields the following stronger formulation of the theorem.

Theorem 7.2. Let µ be a Radon measure on Rn. Then

µ {x ∈ Rn : D1(µ, x) > 0 and J̃2(µ, x) =∞}
is purely 1-unrectifiable.

We now give a second application of Proposition 3.6 and the tools of §5, which in
combination with Lemma 4.2 and Theorem 7.2, provides characterizations in terms of

J̃p(µ, x) of 1-rectifiable and purely 1-unrectifiable pointwise doubling measures.
Let Q↑ ∈ ∆(Rn) denote the parent of Q ∈ ∆(Rn). That is, let Q↑ denote the unique

dyadic cube such that Q↑ ⊇ Q and sideQ↑ = 2 sideQ.

Lemma 7.3 (drawing rectifiable curves through the leaves of uniformly doubling trees).
Let n ≥ 2, let 1 ≤ p <∞, and let 0 < D <∞. Let µ be a Radon measure on Rn. If T is
a tree of dyadic cubes such that

(7.1) µ(3Q↑) ≤ 2Dµ(3Q) for all Q ∈ T \ Top(T ), and
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(7.2) Sp(µ, T ) :=
∑
Q∈T

βp(µ, 3Q)2 diamQ <∞,

then there exists a rectifiable curve Γ in Rn such that Γ ⊇ Leaves(T ) and

(7.3) H1(Γ) .n diamTop(T ) + (3200
√
n)2D/pSp(µ, T ).

Proof. As in the proof of Lemma 5.3, we may assume without loss of generality that
Top(T ) = [0, 1)n and every cube Q ∈ T belongs to an infinite branch of T . Set parameters
C? = 4 and r0 = 3

√
n. For each Q ∈ T , let z3Q = µ(3Q)−1

∫
3Q
z dµ(z) denote the center

of mass of 3Q. For each k ≥ 0, let Zk = {z3Q : Q ∈ T and sideQ = 2−k} and choose Vk
to be any maximal 2−kr0-separated subset of Zk. Pick any x0 ∈ 3Q0. Then

(7.4) Vk ⊆ Zk ⊆ 3Top(T ) ⊆ B(x0, r0) ⊆ B(x0, C
?r0).

The set Vk satisfies condition (VI) of Proposition 3.6 by definition. The set Vk also satisfies
conditions (VII) and (VIII) of Proposition 3.6 (see the proof of Lemma 5.3).

For each k ≥ 0 and v ∈ Vk, choose a dyadic cube Qk,v ∈ T such that v = z3Qk,v
. Then,

for each k ≥ 1 and v ∈ Vk, choose a minimal dyadic cube Q̂k,v ∈ T such that Q̂k,v ⊇ Qk,v

and such that 3Q̂k,v contains 3Qj,v′ for every j ∈ {k−1, k} and v′ ∈ Vj ∩B(v, 65C?2−kr0).
Since 65C?2−kr0 = 780

√
n2−k, we obtain (the overestimate)

(7.5)
side Q̂k,v

sideQj,v′
=

diam 3Q̂k,v

diam 3Qj,v′
≤ 2dlog2 1600

√
ne < 3200

√
n

for all j ∈ {k − 1, k} and v′ ∈ Vj ∩B(v, 65C?2−kr0). Thus, by the doubling condition,

(7.6)
µ(Q̂k,v)

µ(Qj,v′)
≤ 2Ddlog2 1600

√
ne < (3200

√
n)D

for all j ∈ {k − 1, k} and v′ ∈ Vj ∩B(v, 65C?2−kr0).
We are ready to pick lines `k,v and numbers αk,v ≥ 0 to use in Proposition 3.6. Let

k ≥ 1 and let v ∈ Vk. Choose `k,v to be any straight line in Rn such that

βp(µ, 3Q̂k,v, `k,v) ≤ 2βp(µ, 3Q̂k,v).

Then, by (7.5) and (7.6),

βp(µ, 3Qj,v′ , `k,v) diam 3Qj,v′

≤ 2
diam 3Q̂k,v

diam 3Qj,v′

(
µ(Q̂k,v)

µ(Qj,v′)

)1/p

βp(µ, 3Q̂k,v, `k,v) diam 3Qk,v

≤ 6400
√
n
(
3200
√
n
)D/p

βp(µ, 3Q̂k,v) diam 3Qk,v =: αk,v2
−kr0

(7.7)

for all j ∈ {k− 1, k} and v′ ∈ Vj ∩B(v, 65C?2−kr0). Hence condition (3.1) of Proposition

3.6 holds by Lemma 5.2 and (7.7). Next, note that each cube Q ∈ T appears as Q̂k,v for
at most C(n) pairs (k, v) by (7.5). Thus, condition (3.2) of Proposition 3.6 holds by (7.2).
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By Proposition 3.6, there exists a connected, compact set Γ ⊆ Rn such that

H1(Γ) .n,C? r0 +
∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0 .n diamTop(T ) + (3200
√
n)2D/pSp(µ, T )

and Γ ⊇ V = limk→∞ Vk. By Lemma 3.1, Γ is a rectifiable curve. Finally, as in the proof
of Lemma 5.3, Γ ⊇ Leaves(T ). �

Theorem 7.4. Let µ be a Radon measure on Rn and let 1 ≤ p <∞. Then the measure

µ

{
x ∈ sptµ : lim sup

r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞ and J̃p(µ, x) <∞

}
is 1-rectifiable.

Proof. Let µ be a Radon measure on Rn and let 1 ≤ p <∞. Write

Double(µ, x) := lim sup
r↓0

µ(B(x, 2r))

µ(B(x, r))
∈ [0,∞] for all x ∈ sptµ.

For every x ∈ sptµ such that Double(µ, x) <∞, there exists an integer 1 ≤ Dx <∞ and
rx > 0 such that µ(B(x, 2r)) ≤ 2Dxµ(B(x, r)) for all 0 < r ≤ rx. Hence

µ(3Q↑) ≤ µ(B(x, diam 3Q↑)) ≤ 2Dxdlog2 6
√
neµ(B(x, sideQ)) ≤ 2Dxdlog2 6

√
neµ(3Q)

for every dyadic cube Q ∈ ∆(Rn) containing x such that 2dlog2 6
√
ne−1 sideQ ≤ rx. Thus,

if Double(µ, x) <∞, then x belongs to the leaves of the tree

Tx :=
{
Q ∈ ∆1(Rn) : Q ⊆ Qx and

µ(3R↑) ≤ (12
√
n)Dxµ(3R) for all R ∈ ∆(Rn) such that Q ⊆ R ⊆ Qx

}
,

where Qx is defined to be the maximal dyadic cube containing x with

sideQx ≤ min{rx/2dlog2 6
√
ne−1, 1}.

In fact, note that x ∈ Top(Tx) ∩ Leaves(Tx) and the tree Tx satisfies condition (7.1) of
Lemma 7.3. Because each tree Tx is determined by Qx and Dx, and ∆1(Rn) and N are
countable, the collection {Tx : Double(µ, x) <∞} of trees is enumerable, say

{Tx : Double(µ, x) <∞} = {Txi : i = 1, 2, . . . }

for some sequence of points such that Double(µ, xi) <∞ for all i ≥ 1. Therefore, since

{x ∈ Rn : Double(µ, x) <∞ and J̃p(µ, x) <∞}

⊆
∞⋃
i=1

∞⋃
j=1

{x ∈ Top(Txi) : J̃p(µ, x) ≤ j},

it suffices to prove that the measure µ Ay,N is 1-rectifiable for all y ∈ Rn such that

Double(µ, y) <∞ and for all N <∞, where Ay,N := {x ∈ Top(Ty) : J̃p(µ, x) ≤ N}.
Fix y ∈ Rn such that Double(µ, y) < ∞ and fix N < ∞. Set ηy := µ(Top(Ty)). Given

0 < ε < ηy, let Ty,N,ε := Good(Ty, N, ε) ⊆ Ty denote the tree given by Lemma 5.6 applied
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with T = Ty and b(Q) ≡ βp(µ, 3Q)2 diamQ. Then Ty,N,ε inherits property (7.1) from Ty
and, by Lemma 5.6,

Sp(µ, Ty,N,ε) <
N

ε
and

µ(Ay,N ∩ Leaves(Ty,N,ε)) ≥ (1− εηy)µ(Ay,N).

Thus, by Lemma 7.3, there exists a rectifiable curve Γy,N,ε in Rn such that Γy,N,ε ⊇
Leaves(Ty,N,ε). In particular, Γy,N,ε captures a large portion of the mass of Ay,N :

µ(Ay,N \Γy,N,ε) ≤ µ(Ay,N)−µ(Ay,N ∩Γy,N,ε) ≤ µ(Ay,N)− (1− εηy)µ(Ay,N) = εηyµ(Ay,n).

To finish, choose 0 < εk < ηy for all k ≥ 1 so that limk→∞ εk = 0. Then

µ

(
Ay,N \

∞⋃
k=1

Γy,N,εk

)
≤ inf

k≥1
µ(Ay,N \ Γy,N,εk) ≤ ηyµ(Ay,N) inf

k≥1
εk = 0.

Therefore, µ Ay,N is 1-rectifiable. As noted above, this completes the proof. �

We now have all the necessary components to prove Theorem E.

Proof of Theorem E. Let µ is a pointwise doubling measure on Rn and let 1 ≤ p ≤ 2.

Partition Rn into two sets, R = {x ∈ Rn : J̃p(µ, x) < ∞} and P = {x ∈ Rn : J̃p(µ, x) =
∞}. It is a standard exercise to show that R and P are Borel sets. Since Rn = R ∪ P
and R ∩ P = ∅, we have µ = (µ R) + (µ P ), (µ R) ⊥ (µ P ). By uniqueness
of the decomposition µ = µ1

rect + µ1
pu in Proposition 1.2, we can prove µ1

rect = µ R

and µ1
pu = µ P by demonstrating that µ R is 1-rectifiable and µ P is purely 1-

unrectifiable. On one hand, since µ is pointwise doubling,

µ R = µ

{
x ∈ sptµ : lim sup

r↓0

µ(B(x, 2r))

µ(B(x, r))
<∞ and J̃p(µ, x) <∞

}
.

Thus, µ R is 1-rectifiable by Theorem 7.4. On the other hand, because J̃p(µ, x) is
increasing the exponent p, 1 ≤ p ≤ 2, and

µ P ≤ µ {x ∈ Rn : D1(µ, x) = 0}+ µ {x ∈ Rn : D1(µ, x) > 0 and J̃2(µ, x) =∞},
the measure µ P is purely 1-unrectifiable by Lemma 4.2 and Theorem 7.2. Therefore,
µ1
rect = µ R and µ1

pu = µ P . �

8. Drawing rectifiable curves I: description of the curves and
connectedness

The goal of this and the next section is to prove Proposition 3.6, which for the reader’s
convenience we now restate.

Proposition 8.1. Let n ≥ 2, let C? > 1, let x0 ∈ Rn, and let r0 > 0. Let (Vk)
∞
k=0 be a

sequence of nonempty finite subsets of B(x0, C
?r0) such that

(VI) distinct points v, v′ ∈ Vk are uniformly separated: |v − v′| ≥ 2−kr0;
(VII) for all vk ∈ Vk, there exists vk+1 ∈ Vk+1 such that |vk+1 − vk| < C?2−kr0; and,
(VIII) for all vk ∈ Vk (k ≥ 1), there exists vk−1 ∈ Vk−1 such that |vk−1 − vk| < C?2−kr0.
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Suppose that for all k ≥ 1 and for all v ∈ Vk we are given a straight line `k,v in Rn and a
number αk,v ≥ 0 such that

(8.1) sup
x∈(Vk−1∪Vk)∩B(v,65C?2−kr0)

dist(x, `k,v) ≤ αk,v2
−kr0

and

(8.2)
∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0 <∞.

Then the sets Vk converge in the Hausdorff metric to a compact set V ⊆ B(x0, C?r0) and

there exists a compact, connected set Γ ⊆ B(x0, C?r0) such that Γ ⊇ V and

H1(Γ) .n,C? r0 +
∞∑
k=1

∑
v∈Vk

α2
k,v2

−kr0.(8.3)

By viewing
⋃∞
k=0 Vk as vertices of an abstract tree T , where each vertex v ∈ Vk+1

is connected by an edge to a nearest vertex in Vk, one may view Proposition 8.1 as a
criterion for being able to draw a rectifiable curve Γ (i.e. a connected, compact set Γ with
H1(Γ) < ∞) through the leaves V = limk→∞ Vk of T . Convergence of the sets Vk in the
Hausdorff metric is guaranteed by Lemma 8.2, whose proof we defer to Appendix A.

Lemma 8.2. Let B ⊆ Rn be a bounded set and let V0, V1, . . . be a sequence of nonempty
finite subsets of B. If the sequence satisfies (VIII) for some C? > 0 and r0 > 0, then Vk
converges in the Hausdorff metric to a compact set V ⊆ B.

The power of 2 in the quantity α2
k,v in Proposition 8.1 is a consequence of the following

application of the Pythagorean formula. For a proof of Lemma 8.3, see Appendix A.

Lemma 8.3. Suppose that V ⊆ Rn is a 1-separated set with #V ≥ 2 and there exist lines
`1 and `2 and a number 0 ≤ α ≤ 1/16 such that

dist(v, `i) ≤ α for all v ∈ V and i = 1, 2.

Let πi denote the orthogonal projection onto `i. There exist compatible identifications of
`1 and `2 with R such that π1(v′) ≤ π1(v′′) if and only if π2(v′) ≤ π2(v′′) for all v′, v′′ ∈ V .
If v1 and v2 are consecutive points in V relative to the ordering of π1(V ), then

(8.4) H1([u1, u2]) < (1 + 3α2) · H1([π1(u1), π1(u2)]) for all [u1, u2] ⊆ [v1, v2].

Moreover,

(8.5) H1([y1, y2]) < (1 + 12α2) · H1([π1(y1), π1(y2)]) for all [y1, y2] ⊆ `2.

In §§8.1–8.3 and §9, we prove Proposition 8.1 assuming Lemmas 8.2 and 8.3. To begin,
in §8.1, we make some reductions and give a high level overview of the proof of the
proposition. Next, in §8.2, we give a self-contained description of rectifiable curves Γk
that contain Vk and converge in the Hausdorff metric to the curve Γ in the statement of
the proposition. By construction, the sets Γk are evidently closed. In §8.3, we verify that
the sets Γk are connected. In §§9.1–9.5 of the next section, we make detailed estimates on
the length of Γk, which yield the estimate (8.3) on the length of Γ. Finally, to complete
the proof of Proposition 8.1, we supply proofs of Lemmas 8.2 and 8.3 in Appendix A.
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8.1. Overview of the proof of Proposition 8.1. By scale invariance, it suffices to
prove the proposition with r0 = 1. Let n ≥ 2 and C? > 1 be given, let x0 ∈ Rn, let
r0 = 1, and assume that V0, V1, V2, . . . is a sequence of nonempty finite sets in B(x0, C

?)

satisfying (VI), (VII), (VIII). By Lemma 8.2, there exists a compact set V ⊆ B(x0, C?)
such that Vk converges to V in the Hausdorff metric as k → ∞. Suppose that for all
k ≥ 1 and v ∈ Vk we are given a straight line `k,v in Rn and a number αk,v ≥ 0 satisfying
(8.1) and (8.2). If #Vk = 1 for infinitely many k, then V is a singleton and the conclusion
is trivial. Thus, we shall assume that #Vk ≥ 2 for all sufficiently large k. Let k0 ≥ 0 be
the least index such that #Vk ≥ 2 for all k ≥ k0.

To complete the proof, we will construct a sequence Γk0 ,Γk0+1,Γk0+2, . . . of closed,

connected subsets of B(x0, C?) such that Γk ⊇ Vk and

(8.6) H1(Γk) ≤ C

2−k0 +
k∑

j=k0+1

∑
v∈Vj

α2
j,v2
−j

 for all k ≥ k0 + 1,

where C > 1 depends only on n and C?. By Corollary 3.2, there exists a compact,
connected set Γ and a subsequence (Γkj)

∞
j=1 of (Γk)

∞
k=k0

such that Γkj → Γ in the Hausdorff
metric as j → ∞ and Γ satisfies (8.3) with r0 = 1 and implicit constant 32C. We note

that V ⊆ Γ ⊆ B(x0, C?), because Vkj ⊆ Γkj ⊆ B(x0, C?), Vkj → V , and Γkj → Γ.
In the argument that follows, the points in

⋃∞
k=k0

Vk are called vertices. A vertex x ∈ Vk
is said to belong to generation k. Property (VI) states that vertices of the same generation
are uniformly separated. Property (VII) ensures that every vertex is relatively close to
some vertex of the next generation. And property (VIII) guarantees that every vertex
of generation k ≥ k0 + 1 is relatively close to some vertex of the previous generation.
By associating each vertex to a nearest vertex of the previous generation, the set of all
vertices may be viewed as a tree with #Vk0 roots.

8.2. Description of the curves. Each curve Γk will be defined to be the union of finitely
many closed line segments [v′, v′′] (“edges”) between vertices v′, v′′ ∈ Vk and closed sets
B[j, w′, w′′] (“bridges”) that connect vertices w′, w′′ ∈ Vj for some k0 ≤ j ≤ k and pass
through vertices of generation j′ nearby w′ and w′′ for every j′ > j. Bridges will be frozen
in the sense that once a bridge appears in some Γk, the bridge remains in Γk′ for all k′ ≥ k.
If an edge [v′, v′′] is included in Γk, then |v − v′′| < 30C?2−k. If a bridge B[k, v′, v′′] is
included in Γk, then |v′ − v′′| ≥ 30C?2−k.

The precise construction depends on a few auxiliary choices. First, choose a small
parameter 0 < ε ≤ 1/32 so that the conclusions of Lemma 8.3 hold for α = 2ε. Second,
for each generation k ≥ k0 and vertex v ∈ Vk, define an extension E[k, v] to vertices in
future generations as follows:

Given any v ∈ Vk, pick a sequence of vertices v1, v2, . . . inductively so that
v1 is a vertex in Vk+1 that is closest to v0 = v, v2 is a vertex in Vk+2 that is
closest to v1, and so on. Then define

E[k, v] :=
∞⋃
i=0

[vi, vi+1].
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Once extensions have been chosen, for each generation k ≥ k0 and for each pair of vertices
v′, v′′ ∈ Γk, we define the bridge B[k, v′, v′′] by

B[k, v′, v′′] := E[k, v′] ∪ [v′, v′′] ∪ E[k, v′′].

We remark that in the special case Vk+1 ⊇ Vk for all k ≥ k0, the extension E[k, v] = {v}
and the bridge B[k, v′, v′′] = [v′, v′′].

To define the initial curve Γk0 , consider each pair of vertices v′, v′′ ∈ Vk0 . If |v′ − v′′| <
30C?2−k0 , then we include the edge [v′, v′′] in Γk0 . Otherwise, if |v′ − v′′| ≥ 30C?2−k0 ,
then we include the bridge B[k0, v

′, v′′] in Γk0 . That is,

(8.7) Γk0 :=
⋃

v′,v′′∈Vk0

|v′−v′′|<30C?2−k0

[v′, v′′] ∪
⋃

v′,v′′∈Vk0

|v′−v′′|≥30C?2−k0

B[k0, v
′, v′′].

Suppose that Γk0 , . . . ,Γk−1 have been defined for some k ≥ k0 + 1. In order to define the
next set Γk, we first describe Γk,v, the “new part” of Γk nearby v, for every v ∈ Vk. Then
we declare Γk to be the union of new parts and old bridges. That is,

(8.8) Γk :=
⋃
v∈Vk

Γk,v ∪
k−1⋃
j=k0

⋃
B[j,w′,w′′]⊆Γj

B[j, w′, w′′].

Let v be an arbitrary vertex in Vk. The definition of Γk,v splits into two cases.
Case I: Suppose that αk,v ≥ ε. To define Γk,v, we mimic the construction of the initial

curve Γk0 . Consider every pair of vertices v′, v′′ ∈ Vk ∩ B(v, 65C?2−k). If |v′ − v′′| <
30C?2−k, then we include the edge [v′, v′′] in Γk,v. Otherwise, if |v′− v′′| ≥ 30C?2−k, then
we include the bridge B[k, v′, v′′] in Γk,v. This ends the description of Γk,v in Case I.

Case II: Suppose that αk,v < ε. Identify the straight line `k,v with R (in particular,
pick directions “left” and “right”) and let πk,v denote the orthogonal projection onto `k,v.
By Lemma 8.3 and (VI), both Vk ∩B(v, 65C?2−k) and Vk−1 ∩B(v, 65C?2−k) are arranged
linearly along `k,v. Put v0 = v ∈ Vk and let

v−l, . . . , v−1, v0, v1, . . . , vm

denote the vertices in Vk ∩ B(v, 65C?2−k), arranged from left to right according to the
relative order of πk,v(vi) in `k,v (identified with R), where l,m ≥ 0. We start by describing
the “right half” ΓRk,v of Γk,v, where

ΓRk,v = Γk,v ∩ π−1
k,v([π(v0),∞)).

There will be three subcases. Starting from v0 and working to the right, include each closed
line segment [vi, vi+1] as an edge in ΓRk,v until |vi+1−vi| ≥ 30C?2−k, vi+1 6∈ B(v, 30C?2−k),
or vi+1 is undefined (because i = m). Let t ≥ 0 denote the number of edges that were
included in ΓRk,v.

Case II-NT: If t ≥ 1 (that is, at least one edge was included), then we say that the
vertex v is not terminal to the right and are done describing ΓRk,v.

Case II-T1 and Case II-T2: If t = 0 (that is, no edges were included), then we say
that the vertex v is terminal to the right and continue our description of ΓRk,v, splitting
into subcases depending on how Γk−1 looks nearby v. Let wv be a vertex in Vk−1 that is
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closest to v. Enumerate the vertices in Vk−1∩B(v, 65C?2−k) starting from wv and moving
right (with respect to the identification of `k,v with R) by

wv = wv,0, wv,1, . . . , wv,s.

Let wv,r denote the rightmost vertex in Vk−1∩B(v, C?2−(k−1)). There are two alternatives:

T1: If r = s or if |wv,r − wv,r+1| ≥ 30C?2−(k−1), then we set ΓRk,v = {v}.
T2: If |wv,r − wv,r+1| < 30C?2−(k−1), then v1 exists by (VII) (and |v − v1| ≥ 30C?2−k).

In this case, we set ΓRk,v = B[k, v, v1].

The first alternative defines Case II-T1. The second alternative defines Case II-T2.
This concludes the description of ΓRk,v.

Next, define the “left half” ΓLk,v = Γk,v ∩ π−1
k,v((−∞, πk,v(v0)]) of Γk,v symmetrically.

Also, define the terminology v is not terminal to the left and v is terminal to the left by
analogy with the corresponding terminology to the right. Having separately defined both
the “left half” ΓLk,v and the “right half” ΓRk,v of Γk,v, we now declare

Γk,v := ΓLk,v ∪ ΓRk,v.

This concludes the description of Γk,v in Case II.

8.3. Connectedness. By construction, for all k ≥ k0, every point x ∈ Γk is connected
to Vk inside Γk, because x belongs to an edge [v′, v′′] between vertices v′, v′′ ∈ Vk or x
belongs to a bridge B[j, u′, u′′] between vertices u′, u′′ ∈ Vj for some k0 ≤ j ≤ k. Thus,
to prove that Γk is connected, it suffices to prove that every pair of points in Vk can be
connected inside Γk. We argue by double induction.

The set Vk0 is connected in Γk0 , because Γk0 contains [v′, v′′] or B[k0, v
′, v′′] for every pair

of vertices v′, v′′ ∈ Vk0 . In subsequent generations, if v′, v′′ ∈ Vk and |v′ − v′′| < 30C?2−k,
then v′ and v′′ are connected in Γk. This can be seen by inspection of the various cases
in the definition of Γk,v′ . Suppose for induction that Vk−1 is connected in Γk−1 for some
k ≥ k0 + 1. Let x and y be arbitrary vertices in Vk and let wx, wy ∈ Vk−1 denote vertices
that are closest to x and y, respectively. Because Vk−1 is connected in Γk−1, wx and wy
can be joined in Γk−1 by a tour of p+ 1 vertices in Vk−1, say

w0 = wx, w1, . . . , wp = wy,

where each pair wi, wi+1 of consecutive vertices is connected in Γk−1 by an edge [wi, wi+1]
or by a bridge B[j, u′, u′′] for some k0 ≤ j ≤ k − 1 and u′, u′′ ∈ Vj with the property that
wi ∈ E[j, u′] and wi+1 ∈ E[j, u′′].

Set v0 = x, which satisfies |v0−w0| = |x−wx| < C?2−k by (VIII). Suppose for induction
that 0 ≤ t ≤ p− 1 and there exists a vertex vt ∈ Vk such that |vt − wt| < C?2−(k−1) and
v0 and vt are connected in Γk. If t ≤ p− 2, choose vt+1 to be any vertex in Vk such that
|vt+1 − wt+1| < C?2−(k−1), which exists by (VII). Otherwise, if t = p − 1, set vt+1 = y,
which also satisfies |vt+1−wt+1| = |y−wy| < C?2−(k−1) by (VIII). We will now show that
vt and vt+1 are connected in Γk, and thus, v0 and vt+1 are connected in Γk. The proof
splits into two cases, depending on whether the vertices wt and wt+1 in Vk−1 are connected
by a bridge or an edge.
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Figure 8.1. Truncated view of [wt, wt+1] and z0 = vt, z1, . . . , zq = vt+1 in
B(vt, 64C?2−k) when αk,vt < ε, rescaled so that C?2−k = 1.

First, suppose that wt, wt+1 ∈ B[j, u′, u′′] for some k0 ≤ j ≤ k − 1 and some u′, u′′ ∈ Vj
with wt ∈ E[j, u′] and wt+1 ∈ E[j, u′′]. Let z′ denote the unique point in Vk ∩E[j, u′] and
let z′′ denote the unique point in Vk ∩ E[j, u′′]. Then z′, z′′ ∈ B[j, u′, u′′]. Hence z′ and
z′′ are connected in Γk, because B[j, u′, u′′] ⊆ Γk. Next, by definition of the extensions,
|z′ − wt| < C?2−(k−1) and |z′′ − wt+1| < C?2−(k−1). Thus,

|vt − z′| ≤ |vt − wt|+ |wt − z′| < 2C?2−(k−1) < 30C?2−k,

and similarly, |vt+1 − z′′| < 30C?2−k. It follows that vt is connected to z′ in Γk and vt+1

is connected to z′′ in Γk. Therefore, concatenating paths, vt is connected to vt+1 in Γk.
Secondly, suppose that [wt, wt+1] is an edge in Γk−1. Then |wt − wt+1| < 30C?2−(k−1).

Hence

|vt − vt+1| ≤ |vt − wt|+ |wt − wt+1|+ |wt+1 − vt+1| < 32C?2−(k−1) = 64C?2−k.

Because |vt − vt+1| < 65C?2−k, it follows that vt is connected to vt+1 in Vk if αk,vt ≥ ε
by Case I in the definition of Γk,vt . On the other hand, suppose that αk,vt < ε. Then
Vk ∩ B(vt, 64C?2−k) may be arranged linearly according to their relative order under
orthogonal projection onto `k,vt . Label the vertices in Vk ∩ B(vt, 64C?2−k) lying between
vt and vt+1 inclusively, according to this order, say

z0 = vt, z1, . . . , zq = vt+1.

Because (1 + 3ε2)64 < 65, Lemma 8.3 ensures that vt, vt+1 ∈ B(zi, 65C?2−k) for all
1 ≤ i ≤ q (see Figure 8.1). Thus, vt and vt+1 are connected in Vk if αk,zi ≥ ε for some
1 ≤ i ≤ q by Case I in the definition of Γk,zi . Finally, suppose that αk,zi < ε for all
1 ≤ i ≤ q. Because Γk−1 contains the edge [wt, wt+1], the set Γk,zi contains B[k, zi, zi+1]
or [zi, zi+1] for each 0 ≤ i ≤ q − 1, depending on whether zi is terminal or zi is not
terminal in the direction from zi to zi+1. (In particular, in each instance alternative T1
does not occur.) Hence zi and zi+1 are connected in Γk for all 0 ≤ i ≤ q − 1. Therefore,
concatenating paths, we see that vt = z0 and vt+1 = zq are connected in Γk in this case,
as well.

By induction, v0 and vt are connected in Vk for all 1 ≤ t ≤ p. In particular, x = v0 and
y = vp are connected in Vk. Since x and y were arbitrary vertices in Vk, it follows that Vk
is connected in Γk. Therefore, by induction, Γk is connected for all k ≥ k0.
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9. Drawing rectifiable curves II: length estimates

We continue to adopt the notation and assumptions of §§8.1–8.3.
Our goal in this section is to verify that Γk0+1,Γk0+2, . . . satisfy the estimate (8.6).

Roughly speaking, we would like to bound the length of Γk0 by C2−k0 and to bound
H1(Γk) by H1(Γk−1) + C

∑
v∈Vk α

2
k,v2

−k for all k ≥ k0 + 1, for some C independent of k.
In other words, we want to “pay” for the length of the “new curve” Γk with the length of
“old curve” Γk−1 and the sum C

∑
v∈Vk α

2
k,v2

−k. This plan works more or less, except that
more work is required to pay for an edge [v′, v′′] in Γk when the vertex v′ or v′′ is close to
a terminal vertex in Case II of the construction, because the old curve may not “span”
the new edge [v′, v′′]. To handle this extra complication, we introduce a mechanism to
“prepay” length called phantom length. The idea for phantom length comes from Jones’
original traveling salesman construction (see [Jon90]).

9.1. Phantom length. Below it will be convenient to have notation to refer to the
vertices appearing in a bridge. For each extension E[k, v], say with E[k, v] defined by

E[k, v] =
⋃∞
i=0[vi, vi+1], we define the corresponding extension index set I[k, v] by

I[k, v] = {(k + i, vi) : i ≥ 0}.

For each bridge B[k, v′, v′′], we define the corresponding bridge index set I[k, v′, v′′] by

I[k, v′, v′′] = I[k, v′] ∪ I[k, v′′].

For all generations k ≥ k0 and for all vertices v ∈ Vk, we define the phantom length
pk,v := 3C?2−k. If B[k, v′, v′′] is a bridge between vertices v′, v′′ ∈ Vk, then the totality
pk,v′,v′′ of phantom length associated to pairs in I[k, v′, v′′] is given by

pk,v′,v′′ := 3C?
(
2−k + 2−(k+1) + · · ·

)
+ 3C?

(
2−k + 2−(k+1) + · · ·

)
= 12C?2−k.

During the proof we will keep tally of phantom length at certain pairs (k, v) with v ∈ Vk
as an accounting tool.

We initialize Phantom(k0), the index set of phantom length tracked at stage k0, to be
the set of all pairs (j, u) such that the vertex u ∈ Vj appears in the definition of Γk0 ,
including all vertices in Vk0 and all vertices in extensions in bridges in Γk0 . That is,

Phantom(k0) := {(k0, v) : v ∈ Vk0} ∪
⋃

B[k0,v′,v′′]⊆Γk0

I[k0, v
′, v′′].

Suppose that Phantom(k0), . . . ,Phantom(k − 1) have been defined for some k ≥ k0 + 1,
where the index set Phantom(k − 1) satisfies the following two properties.

Bridge property: If a bridge B[k − 1, w′, w′′] is included in Γk−1, then
Phantom(k − 1) contains I[k − 1, w′, w′′].

Terminal vertex property: Let w ∈ Vk−1 and let ` be a line such that

dist(y, `) < ε2−(k−1) for all y ∈ Vk−1 ∩B(w, 30C?2−(k−1)).

Arrange Vk−1 ∩ B(w, 30C?2−(k−1)) linearly with respect to the orthogonal
projection π` onto `. If there is no vertex w′ ∈ Vk−1 ∩B(w, 30C?2−(k−1)) to
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the “left” of w or to the “right” of w, then (k − 1, w) ∈ Phantom(k − 1).
That is, identifying ` with R, if

Vk−1 ∩B(w, 30C?2−(k−1)) ∩ π−1
` ((−∞, π`(w))) = ∅ or

Vk−1 ∩B(w, 30C?2−(k−1)) ∩ π−1
` ((π`(w),∞)) = ∅,

then (k − 1, w) ∈ Phantom(k − 1).

(Note that Phantom(k0) satisfies the terminal vertex property trivially, since Phantom(k0)
includes (k0, v) for every v ∈ Vk0 .) We form Phantom(k) starting from Phantom(k − 1),
as follows. Initialize the set Phantom(k) to be equal to Phantom(k − 1). Next, delete all
pairs (k−1, w) and (k, ṽ) appearing in Phantom(k−1) from Phantom(k). Lastly, for each
vertex v ∈ Vk, include additional pairs in Phantom(k) according to the following rules.

• Case I: Suppose that αk,v ≥ ε. Include (k, v′) in Phantom(k) for all vertices
v′ ∈ Vk∩B(v, 65C?2−k) and include I[k, v′, v′′] as a subset of Phantom(k) for every
bridge B[k, v′, v′′] in Γk,v.
• Case II-NT: Suppose that αk,v < ε, and ΓRk,v or ΓLk,v is defined by Case II-NT.

This case does not generate any phantom length.
• Case II-T1: Suppose that αk,v < ε, and ΓRk,v or ΓLk,v is defined by Case II-T1.

Include (k, v) ∈ Phantom(k).
• Case II-T2: Suppose that αk,v < ε, and ΓRk,v or ΓLk,v is defined by Case II-T2.

When ΓRk,v is defined by Case II-T2, include I[k, v, v1] as a subset of Phantom(k).

When ΓLk,v is defined by Case II-T2, include I[k, v−1, v] as a subset of Phantom(k).
In particular, note that (k, v) is included in Phantom(k).

The phantom length associated to deleted pairs will be available to pay for the length of
edges in Γk near terminal vertices in Vk and to pay for the phantom length of pairs in
Phantom(k) \ Phantom(k − 1).

It is clear that Phantom(k) satisfies the bridge property. To check that Phantom(k)
satisfies the terminal vertex property, let v ∈ Vk and let ` be a line such that

dist(v, `) < ε2−k for all y ∈ Vk ∩B(v, 30C?2−k).

Identify ` with R and arrange Vk ∩B(v, 30C?2−k) linearly with respect to the orthogonal
projection π` onto `. Assume that there is no vertex v′ ∈ Vk ∩B(v, 30C?2−k) to the “left”
of v or to the “right” of v with respect the ordering under π`. If αk,v ≥ ε, then (k, ṽ)
was included in Phantom(k) for every ṽ ∈ Vk ∩ B(v, 65C?2−k). In particular, (k, v) is in
Phantom(k). Otherwise, if αk,v < ε, then Vk ∩B(v, 30C?2−k) is also linearly ordered with
respect to the orthogonal projection onto `k,v. By Lemma 8.3, the two orderings agree
modulo the choice of orientation for ` and `k,v. In this case, the assumption that there is
no vertex v′ ∈ Vk∩B(v, 30C?2−k) to the “left” of v or to the “right” of v translates to the
statement that ΓLk,v or ΓRk,v is defined by Case II-T1 or Case II-T2, whence (k, v) was
included in Phantom(k). Therefore, Phantom(k) satisfies the terminal vertex property.
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Figure 9.1. Possible location of future vertices nearby a bridge B[k, v′, v′′]
included in ΓRk,v′ (Case II-T2) shaded in yellow, rescaled so that 2−k = 1.

9.2. Core of a bridge. For every bridge B[k, v′, v′′] between vertices v′, v′′ ∈ Vk, we
define the core C[k, v′, v′′] of the bridge to be

C[k, v′, v′′] =
9

10
[v′, v′′].

That is, C[k, v′, v′′] is the interval of length 9/10 of the length of [v′, v′′] that is concentric
with [v′, v′′]. Because H1(B[k, v′, v′′]) ≥ 30C?2−k for any bridge B[k, v′, v′′] included in
the construction, the corresponding core has significant length:

(9.1) H1(C[k, v′, v′′]) ≥ 27C?2−k.

For all k ≥ k0 +1, let CoresII(k) denote the set of cores C[k, v′, v′′] of bridges B[k, v′, v′′]
between vertices v′, v′′ ∈ Vk that were included in Γk in Case II-T2 for some ΓRk,v or ΓLk,v.
We claim that cores in

⋃∞
j=k0+1 CoresII(j) are pairwise disjoint. To see this, suppose that

C[k, v′, v′′] ∈ CoresII(k) and C[j, w′, w′′] ∈ CoresII(j) for some j ≥ k ≥ k0 + 1. Because
the bridges B[k, v′, v′′] and B[j, w′, w′′] arise in Case II-T2 of the construction, we have

(9.2) 30C?2−k ≤ |v′ − v′′| < 64C?2−k and 30C?2−j ≤ |w′ − w′′| < 64C?2−j,

where the upper bounds follow from the bound |wv,r − wv,r+1| < 30C?2−(k−1) appearing
in Case II-T2 of the definition of ΓRk,v. Now, by (VIII), Vj ∩ B(v′, 64C?2−k) is contained

in a C?2−k neighborhood of vertices in Vk ∩ B(v′, 65C?2−k) (see Figure 9.1). Suppose to
get a contradiction that C[k, v′, v′′] and C[j, w′, w′′] are distinct cores that intersect. Note
that the intersection of the cores implies that the two end points w′ and w′′ of B[j, w′, w′′]
lie in opposite shaded regions in Figure 9.1. There are now several cases to consider, but
we can reach a contradiction in each one. First, if j ≥ k + 2, then the intersection of
C[k, v′, v′′] and C[j, w′, w′′] implies (by length considerations, see (9.2)) that w′ or w′′ lies
in the empty space of the figure, where no vertex exists. Next, if j = k + 1, then the
intersection of the cores would imply that [v′, v′′] is included as an edge in Γk, violating the
bound |v′− v′′| ≥ 30C?2−k. Lastly, if j = k, then the intersection of the cores contradicts
that fact that v′ is terminal in the direction from v′ to v′′ and w′ (or w′′) is terminal in
the direction from w′ (w′′) to w′′ (w′). We leave the details to the reader.

9.3. Proof of (8.6). In this section, we break up the proof of (8.6) into two estimates.
To state these, we first introduce some useful notation.



MULTISCALE ANALYSIS OF 1-RECTIFIABLE MEASURES II 37

• Let Edges(k) denote the set of all edges [v′, v′′] included in Γk.
• Let Bridges(k) denote the set of all bridges B[k, v′, v′′] included in Γk.
• Let Phantom(k) denote the index set of phantom length, defined above in §9.1.
• Let CoresII(k) denote the set of cores C[k, v′, v′′] of bridges B[k, v′, v′′] between

vertices v′, v′′ ∈ Vk that were included in Γk in Case II-T2 for some ΓRk,v or ΓLk,v.
See §9.2 above.

To establish (8.6), it suffices to prove first that

∑
[v′,v′′]∈Edges(k0)

H1([v′, v′′]) +
∑

B[k0,v′,v′′]∈Bridges(k0)

H1(B[k0, v
′, v′′]) +

∑
(j,u)∈Phantom(k0)

pj,u

≤ C2−k0

(9.3)

and second that, for all k ≥ k0 + 1,

∑
[v′,v′′]∈Edges(k)

H1([v′, v′′]) +
∑

B[k,v′,v′′]∈Bridges(k)

H1(B[k, v′, v′′]) +
∑

(j,u)∈Phantom(k)

pj,u

≤
∑

[w′,w′′]∈Edges(k−1)

H1([w′, w′′]) +
∑

(j,u)∈Phantom(k−1)

pj,u

+ C
∑
v∈Vk

α2
k,v2

−k +
25

27

∑
C[k,v′,v′′]∈CoresII(k)

H1(C[k, v′, v′′]),

(9.4)

where C denotes a constant depending only on n and C?. To see this, let k ≥ k0 + 1.
Then, by (8.8),

H1(Γk) ≤
∑

[v′,v′′]∈Edges(k)

H1([v′, v′′]) +
k∑

j=k0

∑
B[j,w′,w′′]∈Bridges(j)

H1(B[j, w′, w′′]).

Iterating (9.4) a total of k − k0 times, we obtain

H1(Γk) ≤
∑

[v′,v′′]∈Edges(k0)

H1([v′, v′′]) +
∑

B[k0,v′,v′′]∈Bridges(k0)

H1(B[k0, v
′, v′′])

+
∑

(j,u)∈Phantom(k0)

pj,u + C
k∑

j=k0+1

∑
u∈Vj

α2
j,u2

−j

+
25

27

k∑
j=k0+1

∑
C[j,w′,w′′]∈CoresII(j)

H1(C[j, w′, w′′]),
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where C depends on at most n and C?. Since the cores in
⋃k
j=k0+1 CoresII(j) are pairwise

disjoint (see §9.2) and belong to Γk (see (8.8)), it follows that

H1(Γk) ≤
∑

[v′,v′′]∈Edges(k0)

H1([v′, v′′]) +
∑

B[k,v′,v′′]∈Bridges(k0)

H1(B[k0, v
′, v′′])

+
∑

(j,u)∈Phantom(k0)

pj,u + C

k∑
j=k0+1

∑
u∈Vj

α2
j,u2

−j +
25

27
H1(Γk),

where C depends on at most n and C?. Therefore, by (9.3),

H1(Γk) ≤ C

2−k0 +
k∑

j=k0+1

∑
v∈Vj

α2
j,v2
−j

 for all k ≥ k0 + 1,

where C depends on at most n and C?. This shows that (8.6) follows from (9.3) and (9.4).

9.4. Proof of (9.3). Let us start with a few preliminary observations. In the curves
Γk0 ,Γk0+1, . . . , an edge [v′, v′′] is included for some v′, v′′ ∈ Vk only if

|v′ − v′′| < 30C?2−k,

while a bridge B[k, v′, v′′] is included for some v′, v′′ ∈ Vk only if

30C?2−k ≤ |v′ − v′′| < 130C?2−k.

Moreover, the lengths of extensions are controlled by (VII): For all k ≥ k0 and v ∈ Vk,
H1(E[k, v]) ≤ 2C?2−k. Thus, if B[k, v′, v′′] is included in some curve, then

H1(B[k, v′, v′′]) ≤ H1(E[k, v′]) +H1([v′, v′′]) +H1(E[k, v′′])

≤ 4C?2−k +H1([v′, v′′]) < 1.14H1([v′, v′′]).

Recall that k0 ≥ 0 was defined to be the least index such that #Vk ≥ 2 for all k ≥ k0.
Hence, by (VIII), there exists y0 such that Vk0 ⊆ B(y0, C

?2−k0) (where y0 = x0 if k0 = 0).
On one hand,

H1([v′, v′′]) ≤ diamB(y0, C
?2−k0)

for each edge [v′, v′′] in Γk0 . On the other hand,

H1(B[k0, v
′, v′′]) < 1.14 diamB(y0, C

?2−k0)

for each bridge B[k0, v
′, v′′] in Γk0 . Since #Vk0 = #(Vk0 ∩B(y0, C

?2−k0)) .n,C? 1 by (VI),
it follows that∑

[v′,v′′]∈Edges(k0)

H1([v′, v′′]) +
∑

B[k0,v′,v′′]∈Bridges(k0)

H1(B[k0, v
′, v′′]) .n,C? 2−k0 .

Also, since #Vk0 .n,C? 1, the total amount of phantom length associated to Phantom(k0)
can be estimated by∑

(j,u)∈Phantom(k0)

pj,u ≤
∑
v∈Vk0

pk0,v +
∑

v′,v′′∈Vk0

pk0,v′,v′′ .n,C? 2−k0 .

Combining the previous two displayed equations yields (9.3).
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9.5. Proof of (9.4). Edges and bridges forming the curve Γk and “new” phantom length
associated to pairs in Phantom(k) \Phantom(k− 1) may enter the local picture Γk,v of Γk
near v for several vertices v ∈ Vk, but only need to be accounted for once each to estimate
the left hand side of (9.4). We prioritize as follows:

1. Case I edges, Case I bridges, Case I phantom length;
2. Case II-T1 phantom length and (parts of) edges that are nearby Case II-T1

terminal vertices (where here and below nearby means distance at most 2C?2−k);
3. Case II-T2 bridges, Case II-T2 phantom length, and (parts of) edges that are

nearby Case II-T2 terminal vertices;
4. remaining (parts of) edges, which are necessarily far away from Case I vertices

and Case II-T1 and Case II-T2 terminal vertices.

First Estimate (Case I): Suppose that αk,v ≥ ε. Abbreviate B(v, 65C?2−k) =: Bk,v.
Since #(Vk ∩Bk,v) .n,C? 1 by (VI), ε ≤ αk,v, and ε & 1, it follows that∑

v′,v′′∈Vk∩Bk,v

[v′,v′′]∈Edges(k)

H1([v′, v′′]) +
∑

v′,v′′∈Vk∩Bk,v

B[k,v′,v′′]∈Bridges(k)

H1(B[k, v′, v′′]) .n,C? 2−k .n,C? α2
k,v2

−k.

Similarly, the total amount of phantom length associated to Γk,v does not exceed∑
v′∈Vk∩Bk,v

pk,v′ +
∑

v′,v′′∈Vk∩Bk,v

|v′−v′′|≥30C?2−k

pk,v′,v′′ .n,C? 2−k .n,C? α2
k,v2

−k.

Second Estimate (Case II-T1): Suppose that αk,v < ε and v is terminal to the right
with alternative T1. (The case when v is terminal to the left is handled analogously.)
Because alternative T1 holds, the terminal vertex property ensures that (k − 1, wv,r) ∈
Phantom(k− 1), where wv,r is the rightmost vertex in Vk−1 ∩B(v, C?2−(k−1)). Use half of
the phantom length pk−1,wv,r = 3C?2−(k−1) to pay for the phantom length pk,v = 3C?2−k.
Use the other half of pk−1,wv,r to pay for edges or parts of edges in Γk ∩ B(v, 2C?2−k),
which by Lemma 8.3 is less than 3C?2−k as (1 + 3ε2)2 < 3. That is,

pk,v +
∑

[v′,v′′]∈Edges(k)

H1([v′, v′′] ∩B(v, 2C?2−k)) ≤ pk−1,wv,r .

A degenerate case may occur if wv,r ∈ Vk−1 is simultaneously terminal to the left and
to the right (that is, if no edges in Γk−1 emanate from wv,r), but v is not terminal to
the left. Let vl be the leftmost vertex in Vk ∩ B(v, 30C?2−k) relative to the projection
onto `k,v. Then vl and v are distinct, because v is not terminal to the left. Assume that
αk,vl < ε (otherwise, everything is paid for by the previous set of estimates). Then vl is
terminal in the direction away from v with alternative T1. This situation is degenerate,
because the phantom length pk−1,wv,r is not enough to pay for pk,v, pk,vl , and the edges
connecting vl and v. We handle this as follows. First, note that |vl − v| < 2C?2−k,
because wv,r ∈ B(vl, C

?2−k) ∩ B(v, C?2−k) by (VII). In particular, since (1 + 3ε2)2 < 3,
the length of edges connecting v and vl is less than 3C?2−k by Lemma 8.3. Secondly,
because #Vk−1 ≥ 2 and Γk−1 is connected, wv,r must belong to an extension E[j, u′] of a
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bridge B[j, u′, u′′] included in Γj for some k0 ≤ j ≤ k − 1 and some u′, u′′ ∈ Vj. Let ṽ be
the unique point in Vk ∩ E[j, u′]. By the bridge property, (k, ṽ) ∈ Phantom(k − 1). Then

pk,v + pk,vl +
∑

[v′,v′′]∈Edges(k)

H1([v′, v′′] ∩B(v, 2C?2−k)) ≤ pk−1,wv,r + pk,ṽ.

Third Estimate (Case II-T2): Suppose that αk,v < ε and v is terminal to the right
with alternative T2. (The case when v is terminal to the left is handled analogously.)
Write v1 ∈ Vk and wv,r, wv,r+1 ∈ Vk−1 for the vertices appearing in the definition of ΓRk,v.
In this case, we will pay for pk,v,v1 , the length of the bridge B[k, v, v1], and the length of
edges in Γk ∩ B(v, 2C?2−k) and Γk ∩ B(v1, 2C

?2−k). Assume that αk,v1 < ε (otherwise,
everything is paid for by the first set of estimates). In §9.4, we noted that

H1(B[k, v, v1]) ≤ 4C?2−k +H1([v, v1]).

Because |v − wv,r| < 2C?2−k and |v1 − wv,r+1| < 2C?2−k, it follows that

H1(B[k, v, v1]) ≤ 4C?2−k +H1([v, v1]) ≤ 8C?2−k +H1([wv,r, wv,r+1]).

The totality pk,v,v1 of phantom length associated to vertices in B[k, v, v1] is 12C?2−k.
Finally, since αk,v < ε and αk,v1 < ε, the total length of (parts of) edges in

Γk ∩ (B(v, 2C?2−k) ∪B(v1, 2C
?2−k))

does not exceed 5C?2−k by Lemma 8.3 since (1 + 3ε2)2 < 2.5. Altogether,

H1(B[k, v, v1]) + pk,v,v1 +
∑

[v′,v′′]∈Edges(k)

H1
(

[v′, v′′] ∩ (B(v, 2C?2−k) ∪B(v1, 2C
?2−k))

)
≤ H1([wv,r, wv,r+1]) + 25C?2−k

(9.1)

≤ H1([wv,r, wv,r+1]) +
25

27
H1(C[k, v, v1]),

where [wv,r, wv,r+1] ∈ Edges(k − 1) and C[k, v, v1] ∈ CoresII(k).
Fourth Estimate (Case II-NT): Let [v′, v′′] be an edge between vertices v′, v′′ ∈ Vk,

which is not yet wholly paid for. Then αk,v′ < ε and αk,v′′ < ε. Let [u′, u′′] be the largest
closed subinterval of [v′, v′′] such that u′ and u′′ lie at distance at least 2C?2−k away from
Case II-T1 and Case II-T2 terminal vertices (see Figure 9.2). By Lemma 8.3,

H1([u′, u′′]) ≤ (1 + 3α2
k,v′)H1([πk,v′(u

′), πk,v′(u
′′)])

< H1([πk,v′(u
′), πk,v′(u

′′)]) + 90C?α2
k,v′2

−k.

Without loss of generality, suppose that u′ lies to the left of u′′ relative to the order of
their projection onto `k,v′ . Let z′ denote the first vertex in Vk ∩B(v′, 65C?2−k) to the left
of u′ (relative to the order of their projection onto `k,v′) such that

πk,v′(z
′) < πk,v′(u

′)− C?2−k.

Let z′′ denote the first vertex in Vk ∩ B(v′, 65C?2−k) to the right of u′′ (relative to the
order of their projection onto `k,v′) such that

πk,v′(u
′′) + C?2−k < πk,v′(z

′′).
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Figure 9.2. The points v′, v′′, u′, u′′, z′, z′′, w′, w′′ in the Fourth Estimate,
displayed with v′ non-terminal and v′′ Case II-T1 terminal to the right.
The shaded yellow box represents π−1

k,v′([πk,v′(u
′), πk,v′(u

′′)]).

The vertices z′ and z′′ exist, because u′ and u′′ stay a distance of at least 2C?2−k away
from Case II-T1 and Case II-T2 terminal vertices and αk,v′ < ε. By (VIII), we can find
w′, w′′ ∈ Vk−1 such that |w′ − z′| < C?2−k and |w′′ − z′′| < C?2−k. It follows that

πk,v′(w
′) < πk,v′(u

′) < πk,v′(u
′′) < πk,v′(w

′′).

Since |z′ − v′| < 30C?2−k, |v′ − v′′| < 30C?2−k, and |v′′ − z′′| < 30C?2−k, there exists
a sequence of edges in Γk−1 ∩ B(v′, 65C?2−k) connecting w′ and w′′ in Γk−1 by (VIII).
Hence we can pay for H1([πk,v′(u

′), πk,v′(u
′′)]) using the portion of (edges in) the curve

Γk−1 ∩B(v′, 65C?2−k) that lies over the line segment [πk,v′(u
′), πk,v′(u

′′)]. Thus,

H1([u′, u′′]) ≤ H1
(
Ek−1(v′) ∩ π−1

k,v′([πk,v′(u
′), πk,v′(u

′′)])
)

+ 90C?α2
k,v′2

−k,

whereEk−1(v′) denotes the union of edges in Γk−1 between vertices in Vk−1∩B(v′, 65C?2−k).
All that remains is to estimate the length of overlaps of sets of the form

Sk,v′ [u
′, u′′] := Ek−1(v′) ∩ π−1

k,v′([πk,v′(u
′), πk,v′(u

′′)]).

Since Sk,v′ [u
′, u′′] ⊆ Sk,v′ [v

′, v′′], it clearly suffices to estimate the length of the overlaps
of sets Sk,v′ [v

′, v′′]. Suppose that v, v′, v′′ are consecutive vertices in Vk ∩ B(v′, 65C?2−k)
such that v, v′, and v′′ lie at distance at least 65C?2−k from Case I vertices and distance
at least 2C?2−k from Case II-T1 and Case II-T2 terminal vertices. We will show that

(9.5) H1(Sk,v[v, v
′] ∩ Sk,v′ [v′, v′′]) < 40α22−k, α = max{αk,v, αk,v′}.

To start, let `1 and `2 be lines chosen so that `1 is parallel to `k,v, `2 is parallel to `k,v′ ,
and `1 and `2 pass through v′. Note that, by the triangle inequality,

(9.6) dist(x, `i) ≤ 2α2−k for all x ∈ (Vk−1 ∪ Vk) ∩B(v′, 65C?2−k) and i ∈ {1, 2}.

Let πi denote the orthogonal projection onto `i and let Ni denote the closed tubular
neighborhood of `i of radius 2α2−k. Also let Ek−1(v, v′) := Ek−1(v) ∩ Ek−1(v′). By (9.6),

Sk,v[v, v
′] ∩ Sk,v′ [v′, v′′]
⊆ Ek−1(v, v′) ∩ π−1

1 ([π1(v), π1(v′)]) ∩N1 ∩ π−1
2 ([π2(v′), π2(v′′)]) ∩N2

=: Ek−1(v, v′) ∩ S.
(9.7)
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Figure 9.3. Inside the 2-plane containing the lines `1 and `2, the diamond-
shaped region S is the union of two congruent triangles. The length of the
red shadow π1(S) is no greater than 20α22−k.

Since 2α ≤ 1/16, Lemma 8.3 implies that

(9.8) H1(Ek−1(v, v′) ∩ S) < (1 + 3(2α)2)H1(π1(S)) < 2H1(π1(S)).

Let θ be the angle subtended by `1 and `2 (see Figure 9.3). By Lemma 8.3 (8.5), we have

cos(θ) >
1

1 + 12(2α)2
≥ 1− 48α2 > 0.

Hence 1 − sin2(θ) = cos2(θ) > 1 − 96α2. In particular, we obtain sin(θ) <
√

96α < 10α.
Thus, by elementary geometry,

(9.9) H1(π1(S)) ≤ 2α2−k sin(θ) ≤ 20α22−k.

Combining (9.7), (9.8), and (9.9) establishes (9.5).
Carefully tallying the four estimates above, one obtains (9.4).

Appendix A. Proof of Lemmas 8.2 and 8.3

The proof of Lemma 8.2 uses elementary properties of excess and Hausdorff distance;
for a comprehensive reference, we recommend the monograph [Bee93] by Beer.

Recall that for nonempty sets S, T ⊆ Rn, the excess ex(S, T ) of S over T is defined by

ex(S, T ) := sup
s∈S

inf
t∈T
|s− t|

and the Hausdorff distance HD(S, T ) between S and T is defined by

HD(S, T ) := max{ex(S, T ), ex(T, S)}.

The excess satisfies the triangle inequality in the sense that ex(S, T ) ≤ ex(S, U)+ex(U, T )
for all nonempty S, T, U ⊆ Rn. The set of nonempty compact subsets of Rn equipped
with the Hausdorff distance is a metric space. Thus, when restricted to the nonempty
compact sets, we may refer to the Hausdorff distance as the Hausdorff metric.
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Proof of Lemma 8.2. Let n ≥ 1, C? > 1, and r0 > 0. Assume that V0, V1, V2, . . . is
a sequence of nonempty finite subsets of a bounded set B satisfying condition (VIII) of
Proposition 8.1. Because B is compact and (Vk)

∞
k=0 is a sequence of closed subsets of B,

there exist a subsequence (Vkj)
∞
j=0 and a closed set V ⊆ B such that Vkj converges to V

in the Hausdorff metric as j →∞ by Blaschke’s selection theorem (e.g. see [Rog98, p. 90]
or [Bee93, §3.2]). By iterating (VIII), we obtain that for any kj < k < kj+1,

ex(Vk, Vkj) ≤ C?(2−(kj+1) + · · ·+ 2−k)r0 < C?2−kjr0 and

ex(Vkj+1
, Vk) ≤ C?(2−(k+1) + · · ·+ 2−kj+1)r0 < C?2−kr0.

Thus, by the triangle inequality for excess,

ex(Vk, V ) ≤ ex(Vk, Vkj) + ex(Vkj , V ) < C?2−kjr0 + HD(Vkj , V ) and

ex(V, Vk) ≤ ex(V, Vkj+1
) + ex(Vkj+1

, Vk) < HD(V, Vkj+1
) + C?2−kr0.

Therefore,

HD(Vk, V ) < C?2−kjr0 + max
{

HD(Vkj , V ),HD(V, Vkj+1
)
}

whenever kj < k < kj+1. We conclude that the whole sequence Vk converges to V in the
Hausdorff metric as k →∞. �

The proof of Lemma 8.3 that we give uses the area formula for Lipschitz graphs; for a
nice presentation, see §3.3 of the book [EG15] by Evans and Gariepy.

Proof of Lemma 8.3. Let V ⊆ Rn be a 1-separated set with at least two points. Assume
that there exist straight lines `1 and `2 in Rn and a number 0 ≤ α ≤ 1/16 such that

dist(v, `i) ≤ α for all v ∈ V and i = 1, 2.

Let πi denote the orthogonal projection onto `i. Let π⊥i denote the orthogonal projection
onto an orthogonal complement of `i. For any distinct pair of points v1, v2 ∈ V ,

1 ≤ |v1 − v2|2 = |πi(v1)− πi(v2)|2 + |π⊥i (v1)− π⊥i (v1)|2 ≤ |πi(v1)− πi(v2)|2 + 4α2,

because V is 1-separated and the distance of points in V to `i is bounded by α. Hence

(A.1) |πi(v1)− πi(v2)|2 ≥ |v1 − v2|2 − 4α2 ≥ 1− 4α2.

It follows that V belongs to the graph of a piecewise linear function gi : `i → `⊥i such that

‖∇gi‖∞ ≤
2α√

1− 4α2
.

By the area formula for Lipschitz maps, for any line segment [u1, u2] in the graph of gi,

H1([u1, u2]) =

∫
[πi(u1),πi(u2)]

√
1 + |∇gi|2 dH1.

Since
√

1 + x2 ≤ 1 + 1
2
x2 for all x ∈ R, we conclude that

H1([u1, u2]) ≤
∫

[πi(u1),πi(u2)]

(
1 + 1

2
|∇g|2

)
dH1 ≤

(
1 +

2α2

1− 4α2

)
H1([πi(u1), πi(u2)])

for all [u1, u2] ⊆ [v1, v2].
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Because dist(v, `i) ≤ α for all v ∈ V and i = 1, 2, we can find points z1, z2 ∈ `2 such
that |z1− z2| ≥ 1− 2α and dist(zi, `1) ≤ 2α for i = 1, 2. Thus, by analogous computation
with β = 2α/(1− 2α) in place of α,

H1([y1, y2]) ≤
(

1 +
2β2

1− 4β2

)
H1([π1(y1), π1(y2)])

for all [y1, y2] ⊆ `2.
Now, since 0 ≤ α ≤ 1/16,

2α2

1− 4α2
≤ 128

63
α2 < 3α2, β =

2α

1− 2α
≤ 16

7
α ≤ 1

7
, and

2β2

1− 4β2
≤ 98

45
β2 ≤ 512

45
α2 < 12α2.

This establishes (8.4) and (8.5).
Finally, suppose that there exist identifications of `1 and `2 with R and distinct points

v, v′, v′′ ∈ V such that π1(v) < π1(v′) < π1(v′′), but π2(v′) < π2(v) < π2(v′′). By (A.1),
for any distinct w,w′ ∈ V and i ∈ {1, 2} such that πi(w) < πi(w

′), we have

(A.2) |w′ − w| ≥ πi(w
′)− πi(w) ≥

√
|w′ − w|2 − 4α2 ≥ |w′ − w| − 2α > 0.875,

where the last two inequalities hold since b ≤ 2a+
√
b2 − 4a2 for all 0 ≤ 2a ≤ b, 0 ≤ 2α ≤

1/8, and 1 ≤ |w′ − w|. Set

x := |v − v′|, y := |v′′ − v′|, and z := |v′′ − v|.

On one hand, since π1(v) < π1(v′) < π1(v′′), we have z ≈ x + y. On the other hand,
since π2(v′) < π2(v) < π2(v′′), we have y ≈ x + z. Hence z ≈ z + 2x, which yields a
contradiction if α is sufficiently small. More precisely, by repeated application of (A.2),

z ≥ x+ y − 4α ≥ 2x+ z − 8α > 1.75 + z − 8α.

Hence 1.75 < 8α ≤ 1/2 (since α ≤ 1/16), which is absurd. We conclude that under
any choice of identifications of `1 and `2 with R, either π1(v) ≤ π1(v′) if and only if
π2(v) ≤ π2(v′) for all v, v′ ∈ V , or π1(v) ≤ π1(v′) if and only if π2(v) ≥ π2(v′) for all
v, v′ ∈ V . In particular, one can always choose compatible identifications of `1 and `2

with R such that π1(v′) ≤ π1(v′′) if and only if π2(v′) ≤ π2(v′′) for all v′, v′′ ∈ V . �
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